当前位置: 首页 > news >正文

【大数据】AI就业影响数据可视化分析系统 计算机毕业设计项目 Anaconda+Django+Spark+Hadoop环境调整 附源码+文档+讲解

【大数据】AI就业影响数据可视化分析系统 计算机毕业设计项目 Anaconda+Django+Spark+Hadoop环境调整 附源码+文档+讲解

一、个人简介

作者:计算机编程果茶熊
个人简介:曾长期从事计算机专业培训教学,担任过编程老师,同时本人也热爱上课教学,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些任务定制化研发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的障碍能够问我!
想说的话:感谢大家的关注与支持!

网站实战计划
安卓/小程序实战任务
大内容实战项目
计算机毕业设计选题
文末获取源码联系计算机编程果茶熊

二、体系介绍

大数据框架:Hadoop+Spark(Hive需要定制修改)
研发语言:Java+Python(两个版本都支持)
数据库:MySQL
后端框架:SpringBoot(Spring+SpringMVC+Mybatis)+Django(两个版本都支持)
前端:Vue+Echarts+HTML+CSS+JavaScript+jQuery

一个基于大内容技术构建的智能分析平台,专门针对人工智能技术对就业市场产生的深层次影响进行全方位数据挖掘与可视化展示。平台采用Hadoop+Spark分布式计算框架作为数据处理核心,结合Python和Java双语言编写模式,通过Django和Spring Boot双后端架构提供稳定的服务支撑。前端运用Vue框架配合ElementUI组件库和Echarts图表库,构建出交互友好的数据展示界面。系统集成了个人信息管理、地理空间分析、行业洞察分析、AI影响评估分析、职位结构分析以及数据大屏展示六大核心功能模块,能够对海量就业数据进行实时处理和深度分析。通过Spark SQL和Pandas、NumPy等数据科学工具的协同运用,系统达成了对不同地区、不同行业、不同职位层级的AI技术渗透程度和就业影响程度的精准量化分析,为政策制定者、企业管理者和求职者提供科学的决策依据和趋势预测。就是AI就业影响素材可视化分析平台

三、视频解说

四、部分特性展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、部分代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, avg, sum, when, desc, asc
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, DoubleType
import pandas as pd
import numpy as np
from datetime import datetime
import json
spark = SparkSession.builder.appName("AIJobImpactAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
def geographic_spatial_analysis(region_data, job_data, ai_adoption_data):
region_df = spark.createDataFrame(region_data)
job_df = spark.createDataFrame(job_data)
ai_df = spark.createDataFrame(ai_adoption_data)
merged_df = region_df.join(job_df, "region_code").join(ai_df, "region_code")
ai_impact_by_region = merged_df.groupBy("region_name", "province").agg(
count("job_id").alias("total_jobs"),
avg("ai_adoption_rate").alias("avg_ai_adoption"),
sum(when(col("job_status") == "replaced_by_ai", 1).otherwise(0)).alias("replaced_jobs"),
sum(when(col("job_status") == "ai_augmented", 1).otherwise(0)).alias("augmented_jobs"),
sum(when(col("job_status") == "ai_created", 1).otherwise(0)).alias("created_jobs")
)
ai_impact_by_region = ai_impact_by_region.withColumn(
"replacement_rate",
col("replaced_jobs") / col("total_jobs") * 100
).withColumn(
"augmentation_rate",
col("augmented_jobs") / col("total_jobs") * 100
).withColumn(
"creation_rate",
col("created_jobs") / col("total_jobs") * 100
)
regional_clusters = ai_impact_by_region.withColumn(
"impact_level",
when(col("avg_ai_adoption") >= 0.7, "high_impact")
.when(col("avg_ai_adoption") >= 0.4, "medium_impact")
.otherwise("low_impact")
)
correlation_data = regional_clusters.select(
"avg_ai_adoption", "replacement_rate", "augmentation_rate", "creation_rate"
).toPandas()
correlation_matrix = correlation_data.corr()
trend_analysis = merged_df.groupBy("region_name", "year").agg(
avg("ai_adoption_rate").alias("yearly_adoption"),
count("job_id").alias("yearly_jobs")
).orderBy("region_name", "year")
spatial_hotspots = ai_impact_by_region.filter(
(col("avg_ai_adoption") > 0.6) & (col("replacement_rate") > 10)
).orderBy(desc("avg_ai_adoption"))
return {
"regional_impact": regional_clusters.collect(),
"correlation_matrix": correlation_matrix.to_dict(),
"trend_data": trend_analysis.collect(),
"hotspots": spatial_hotspots.collect()
}
def industry_insight_analysis(industry_data, job_market_data, ai_technology_data):
industry_df = spark.createDataFrame(industry_data)
market_df = spark.createDataFrame(job_market_data)
tech_df = spark.createDataFrame(ai_technology_data)
combined_df = industry_df.join(market_df, "industry_code").join(tech_df, "industry_code")
industry_ai_impact = combined_df.groupBy("industry_name", "industry_category").agg(
count("position_id").alias("total_positions"),
avg("ai_automation_score").alias("automation_risk"),
avg("skill_complexity_score").alias("skill_complexity"),
sum(when(col("position_trend") == "declining", col("position_count")).otherwise(0)).alias("declining_positions"),
sum(when(col("position_trend") == "growing", col("position_count")).otherwise(0)).alias("growing_positions"),
sum(when(col("ai_skill_required") == True, 1).otherwise(0)).alias("ai_skill_positions")
)
risk_assessment = industry_ai_impact.withColumn(
"automation_risk_level",
when(col("automation_risk") >= 0.8, "high_risk")
.when(col("automation_risk") >= 0.5, "medium_risk")
.otherwise("low_risk")
).withColumn(
"transformation_index",
(col("ai_skill_positions") / col("total_positions")) * col("automation_risk")
)
industry_evolution = combined_df.groupBy("industry_name", "quarter", "year").agg(
avg("job_satisfaction_score").alias("avg_satisfaction"),
avg("salary_level").alias("avg_salary"),
count("new_hire_count").alias("hiring_activity"),
sum("investment_in_ai").alias("ai_investment")
).orderBy("industry_name", "year", "quarter")
competitive_analysis = industry_ai_impact.withColumn(
"competitiveness_score",
(col("growing_positions") - col("declining_positions")) / col("total_positions") * 100
).orderBy(desc("competitiveness_score"))
skill_gap_analysis = combined_df.groupBy("industry_name").agg(
count(when(col("skill_gap_exists") == True, 1)).alias("positions_with_gaps"),
avg("training_investment").alias("avg_training_investment"),
count(when(col("remote_work_possible") == True, 1)).alias("remote_friendly_positions")
)
future_projection = risk_assessment.withColumn(
"projected_job_change",
when(col("automation_risk") > 0.7, col("total_positions") * -0.3)
.when(col("automation_risk") > 0.4, col("total_positions") * -0.1)
.otherwise(col("total_positions") * 0.1)
)
return {
"industry_impact": risk_assessment.collect(),
"evolution_trends": industry_evolution.collect(),
"competitive_landscape": competitive_analysis.collect(),
"skill_gaps": skill_gap_analysis.collect(),
"future_projections": future_projection.collect()
}
def ai_impact_assessment_analysis(workforce_data, ai_deployment_data, economic_indicators):
workforce_df = spark.createDataFrame(workforce_data)
ai_deploy_df = spark.createDataFrame(ai_deployment_data)
economic_df = spark.createDataFrame(economic_indicators)
assessment_df = workforce_df.join(ai_deploy_df, "company_id").join(economic_df, "region_code")
displacement_analysis = assessment_df.groupBy("occupation_category", "skill_level").agg(
count("employee_id").alias("total_workforce"),
sum(when(col("displacement_risk_score") >= 0.8, 1).otherwise(0)).alias("high_risk_workers"),
sum(when(col("reskilling_completed") == True, 1).otherwise(0)).alias("reskilled_workers"),
avg("productivity_change_percent").alias("avg_productivity_change"),
avg("job_satisfaction_change").alias("avg_satisfaction_change")
)
temporal_impact_trends = assessment_df.groupBy("year", "quarter").agg(
sum("jobs_eliminated").alias("quarterly_job_losses"),
sum("jobs_created").alias("quarterly_job_creation"),
avg("wage_change_percent").alias("avg_wage_change"),
count(when(col("ai_tool_adoption") == True, 1)).alias("ai_adoption_count")
).withColumn(
"net_job_impact",
col("quarterly_job_creation") - col("quarterly_job_losses")
).orderBy("year", "quarter")
demographic_impact = assessment_df.groupBy("age_group", "education_level", "gender").agg(
count("employee_id").alias("group_size"),
avg("displacement_probability").alias("avg_displacement_risk"),
sum(when(col("career_transition_success") == True, 1).otherwise(0)).alias("successful_transitions"),
avg("income_change_percent").alias("avg_income_change")
)
sectoral_vulnerability = assessment_df.groupBy("business_sector").agg(
count("company_id").alias("companies_in_sector"),
avg("ai_investment_ratio").alias("avg_ai_investment"),
sum("workforce_reduction_count").alias("total_workforce_reduction"),
sum("new_role_creation_count").alias("total_new_roles"),
avg("operational_efficiency_gain").alias("avg_efficiency_gain")
).withColumn(
"vulnerability_index",
col("total_workforce_reduction") / (col("total_workforce_reduction") + col("total_new_roles"))
)
mitigation_effectiveness = assessment_df.groupBy("mitigation_strategy_type").agg(
count("employee_id").alias("strategy_coverage"),
avg("post_strategy_employability").alias("avg_employability_improvement"),
sum(when(col("strategy_success") == True, 1).otherwise(0)).alias("successful_cases"),
avg("strategy_cost_per_employee").alias("avg_strategy_cost")
).withColumn(
"strategy_effectiveness",
col("successful_cases") / col("strategy_coverage") * 100
)
comprehensive_impact_score = assessment_df.select(
"region_code",
((col("displacement_risk_score") * 0.4) +
(col("economic_disruption_score") * 0.3) +
(col("social_adaptation_score") * 0.3)).alias("comprehensive_impact_score")
).groupBy("region_code").avg("comprehensive_impact_score")
return {
"displacement_analysis": displacement_analysis.collect(),
"temporal_trends": temporal_impact_trends.collect(),
"demographic_impact": demographic_impact.collect(),
"sectoral_vulnerability": sectoral_vulnerability.collect(),
"mitigation_effectiveness": mitigation_effectiveness.collect(),
"comprehensive_scores": comprehensive_impact_score.collect()
}

六、部分文档展示

在这里插入图片描述

七、END

文末获取源码联系计算机编程果茶熊

http://www.hskmm.com/?act=detail&tid=27281

相关文章:

  • 2026 航空航天、智能感知与控制国际学术会议
  • Trae 或 vscode无法在vue文件中自动跳转解决
  • 实用指南:小白也能学会的大模型构建:DeepSeek实战教程+代码解析
  • 安徽京准:NTP网络时间服务器技术应用方案
  • 2025工矿灯厂家TOP5推荐:高光效与耐用性深度评测
  • ​​无源探头与高压差分探头的技术比较与应用选择​​
  • PKDV5351高压差分探头在氢燃料电池堆电压均衡监测中的实战应用案例
  • 2025秋_8
  • react的依赖项数组 - 实践
  • 25年人教版一年级资料汇总!(一年级数学上册典型练习题)(解决问题共150道)电子版可打印(共6页)!可打印可下载
  • 第十天
  • VSCode万能Debug任何执行python文档命令的详细教程
  • 专业的用户反馈管理分析工具,能帮企业节省多少开支?
  • Kotlin-微服务实用指南-全-
  • 外设知识学习笔记
  • “你好BOE”再度携非遗与当代设计亮相米兰 以科技之力向世界展现东方美学
  • 个人微信机器人开发指南!API接口轻松上手
  • AI大模型项目三连炸:多模态监控平台+RAG推荐系统+智能体智驾系统
  • 10.9
  • PWN手的成长之路-13-jarvisoj_level0
  • 计算机毕设 java 基于 Java 的题库管理强大的系统 基于 SSM+JavaWeb 的题库全流程管理平台 Java+MySQL 的题库服务一体化系统
  • 微信最新协议API上线!个人号快速接入
  • Firefox火狐浏览器插件下载、安装路径、备份插件、手动安装插件
  • 2025.10.9午后有感
  • Firefox火狐浏览器插件下载、安装路径
  • 实用指南:PyTest框架学习
  • PWN手成长之路-12-pwn1_sctf_2016
  • WPF应用最小化到系统托盘
  • Hyper-v 安装 Android9
  • test8 - post