1.6 节
\(\mathbf{Problem\ 1}\) 解:
\[\begin{align*}
&(1). \lim_{n \rightarrow \infin}\left(1 + \frac{1}{n - 2}\right)^n & = &\lim_{n \rightarrow \infin}\left(1 + \frac{1}{n - 2}\right)^{n - 2} \left(1 + \frac{1}{n - 2}\right)^2 \\
&& = &\lim_{n \rightarrow \infin}\left(1 + \frac{1}{n - 2}\right)^{n - 2} \cdot \lim_{n \rightarrow \infin}\left(1 + \frac{1}{n - 2}\right)^2 \\
&& = &\ \left(1 + \lim_{n \rightarrow \infin}\frac{1}{n - 2}\right)^2 e \\
&& = &\ e \\
&(3). \lim_{n \rightarrow \infin}\left(\frac{1 + n}{2 + n}\right)^n & = &\ \frac{1}{\lim_{n \rightarrow \infin}\left(1 + \frac{1}{n + 1}\right)^n} \\
&& = &\ \frac{1}{\lim_{n \rightarrow \infin}\left(1 + \frac{1}{n + 1}\right)^{n + 1} \cdot \lim_{n \rightarrow \infin}\left(1 + \frac{1}{n + 1}\right)^{-1}} \\
&& = &\ \frac{1}{\left(1 + \lim_{n \rightarrow \infin}\frac{1}{n + 1}\right)^{-1}e} \\
&& = &\ \frac{1}{e} \\
&(5). \lim_{n \rightarrow \infin}\left(1 + \frac{1}{2n^2}\right)^{4n^2} & = &\lim_{n \rightarrow \infin}\left(\left(1 + \frac{1}{2n^2}\right)^{2n^2}\right)^2 \\
&& = &\left(\lim_{n \rightarrow \infin}\left(1 + \frac{1}{2n^2}\right)^{2n^2}\right)^2 \\
&& = &\ e^2 \\
\end{align*}
\]
\(\mathbf{Problem\ 3}\) 证明:
由平均值不等式:
\[\left(1 + \frac{1}{n}\right)^n < \left(\frac{1 + n(1 + 1/n)}{n + 1}\right)^{n + 1} = \left({1 + \frac{1}{n + 1}}\right)^{n + 1}
\]
故 \(\{(1 + \frac{1}{n})^n\}\) 单调递增。
\(\mathbf{Problem\ 6}\) 证明:
由 \(\mathbf{Problem\ 3}\) 得:
\[\left(1 + \frac{1}{n}\right)^n < \lim_{n \rightarrow \infin}\left(1 + \frac{1}{n}\right)^n = e
\]
注意到由调和—几何平均不等式:
\[\left(1 + \frac{1}{n}\right)^{n + 1} > \left(\frac{n + 2}{1 + (n + 1) \cdot \frac{n}{n + 1}}\right)^{n + 2} = \left(1 + \frac{1}{n + 1}\right)^{n + 2}
\]
故有:
\[\left(1 + \frac{1}{n}\right)^{n + 1} > \lim_{n \rightarrow \infin}\left(1 + \frac{1}{n}\right)^{n + 1} = e
\]
对上述两不等式左右式同时取对数,可得:
\[\begin{align*}
n\ln\left(1 + \frac{1}{n}\right) & = \ln\left(\left(1 + \frac{1}{n}\right)^n\right) < 1 \\
(n + 1)\ln\left(1 + \frac{1}{n}\right) & = \ln\left(\left(1 + \frac{1}{n}\right)^{n + 1}\right) > 1
\end{align*}
\]
即得:
\[\frac{1}{n + 1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}
\]
\(\mathbf{Problem\ 8}\) 证明:
由 \(\mathbf{Problem\ 6}\) 得:
\[\frac{1}{n + 1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}
\]
又有:
\[\sum_{i = 1}^n \ln\left(1 + \frac{1}{i}\right) = \sum_{i = 1}^n \ln\left(\frac{i + 1}{i}\right) = \ln\left(\prod_{i = 1}^n\frac{i + 1}{i}\right) = \ln(n + 1)
\]
故有:
\[\sum_{i = 1}^n \frac{1}{i + 1} < \ln(n + 1) < \sum_{i = 1}^n \frac{1}{i}
\]
\(\mathbf{Problem\ 10}\) 证明:
令:
\[x_n = \sum_{i = 1}^n \frac{1}{i} - \ln(n + 1)
\]
\(\mathbf{Lemma.}\) \(\{x_n\}\) 收敛,下证该结论:
由 \(\mathbf{Problem\ 8}\) 得:
\[\sum_{i = 1}^n \frac{1}{i + 1} < \ln(n + 1) < \sum_{i = 1}^n \frac{1}{i}
\]
故有:
\[x_n < \sum_{i = 1}^n \frac{1}{i} - \sum_{i = 2}^{n + 1} \frac{1}{i} = 1 - \frac{1}{n + 1} < 1
\]
又有:
\[x_{n + 1} - x_{n} = \sum_{i = 1}^{n + 1} \frac{1}{i} - \ln(n + 2) - \sum_{i = 1}^n \frac{1}{i} + \ln(n + 1) = \frac{1}{n + 1} - \ln\left(1 + \frac{1}{n + 1}\right) > 0
\]
故 \(\{x_n\}\) 单调递增且有上界,即 \(\{x_n\}\) 收敛,不妨记 \(\gamma = \lim_{n \rightarrow \infin}x_n\),引理得证。
则有:
\[\epsilon_{n} = \sum_{i = 1}^n \frac{1}{i} - \ln n - \gamma = x_n - \gamma + \ln\left(1 + \frac{1}{n}\right)
\]
由 \(\mathbf{Problem\ 6}\) 得:
\[x_n - \gamma + \frac{1}{n + 1} < \epsilon_{n} < x_n - \gamma + \frac{1}{n}
\]
由 \(\mathbf{Lemma}\) 得:
\[\lim_{n \rightarrow \infin}\left(x_n - \gamma + \frac{1}{n + 1}\right) = \lim_{n \rightarrow \infin}\left(\frac{1}{n + 1}\right) = 0 \\
\lim_{n \rightarrow \infin}\left(x_n - \gamma + \frac{1}{n}\right) = \lim_{n \rightarrow \infin}\left(\frac{1}{n}\right) = 0 \\
\]
则由夹逼定理得:
\[\lim_{n \rightarrow \infin} \epsilon_{n} = 0
\]
1.7 节
\(\mathbf{Problem\ 1}\) 证明:\(\{a_n\}\) 是基本列。
由题得:对任意 \(\epsilon > 0\),存在 \(N \in \mathbb{N^*}\),使得任意 \(n, m > N\) 有:
\[|a_n - a_N | < \frac{\epsilon}{2}, \quad |a_m - a_N | < \frac{\epsilon}{2}
\]
从而有:
\[|a_n - a_m| = |a_n - a_N - (a_m - a_N)| \le |a_n - a_N| + |a_m - a_N| < \epsilon
\]
\(\mathbf{Problem\ 2}\)
(1)证明:\(\{a_n\}\) 不是基本列。
考虑令:
\[a_n = \sum_{i = 1}^n \frac{1}{i}
\]
则有:
\[|a_{n + p} - a_n| = \sum_{i = n + 1}^{n + p} \frac{1}{i} < \sum_{i = n + 1}^{n + p} \frac{1}{n} = \frac{p}{n}
\]
故此时 \(\{a_n\}\) 符合题设,然而由例题 1.5.2 可知 \(\{a_n\}\) 发散,故 \(\{a_n\}\) 不是基本列。
(2)证明:\(\{a_n\}\) 是基本列。
由题可知:
\[|a_{n + 1} - a_n| \le \frac{1}{n^2} < \frac{1}{n(n - 1)} = \frac{1}{n - 1} - \frac{1}{n}
\]
故有:
\[\begin{align*}
|a_{n + p} - a_n| = \left|\sum_{i = n}^{n + p - 1} (a_{i + 1} - a_i)\right| \le \sum_{i = n}^{n + p - 1} |a_{i + 1} - a_i| < \sum_{i = n}^{n + p - 1} \left(\frac{1}{i - 1} - \frac{1}{i}\right)\\
= \frac{1}{n - 1} - \frac{1}{n + p - 1} < \frac{1}{n - 1}\\
\end{align*}
\]
则对于任意 \(\epsilon > 0\),取 \(N = \left[\frac{1}{\epsilon}\right] + 2\),则对于 \(n > N\),有:
\[|a_{n + p} - a_n| < \frac{1}{N - 1} < \epsilon
\]
\(\mathbf{Problem\ 3}\) 证明:
(1)由题可知:
\[\begin{align*}
|a_{n + p} - a_n| = \left|\sum_{i = n + 1}^{n + p} (-1)^{i - 1}\frac{1}{i^2}\right| \le \sum_{i = n + 1}^{n + p} \left|(-1)^{i - 1}\frac{1}{i^2}\right| < \sum_{i = n + 1}^{n + p} \frac{1}{(i - 1)i}\\
= \sum_{i = n + 1}^{n + p} \left(\frac{1}{i - 1} - \frac{1}{i}\right) = \frac{1}{n} - \frac{1}{n + p} < \frac{1}{n}\\
\end{align*}
\]
故对于任意 \(\epsilon > 0\),取 \(N = \left[\frac{1}{\epsilon}\right] + 1\),则对 \(n > N\) 有:
\[|a_{n + p} - a_n| < \frac{1}{N} < \epsilon
\]
(3)由题可知:
\[\begin{align*}
|a_{n + p} - a_n| = \left|\sum_{i = n + 1}^{n + p} \frac{\sin ix}{i^2}\right| \le \sum_{i = n + 1}^{n + p} \left|\frac{\sin ix}{i^2}\right| < \sum_{i = n + 1}^{n + p} \frac{1}{i^2} < \sum_{i = n + 1}^{n + p} \frac{1}{i(i - 1)}\\
= \sum_{i = n + 1}^{n + p} \left(\frac{1}{i - 1} - \frac{1}{i}\right) = \frac{1}{n} - \frac{1}{n + p} < \frac{1}{n}\\
\end{align*}
\]
故对于任意 \(\epsilon > 0\),取 \(N = \left[\frac{1}{\epsilon}\right] + 1\),则对 \(n > N\) 有:
\[|a_{n + p} - a_n| < \frac{1}{N} < \epsilon
\]
\(\mathbf{Problem\ 4}\) 证明:
令:
\[x_n = \sum_{i = 1}^{n - 1} \left|a_{i + 1} - a_i\right|
\]
则由 \(x_{n + 1} - x_n = |a_{n + 1} - a_n| \ge 0\) 得 \(\{x_n\}\) 单调不下降,又有 \(\{x_n\}\) 有界,故 \(\{x_n\}\) 收敛。
不妨令 \(\gamma = \lim_{n \rightarrow \infin} x_n\),则有 \(\gamma \ge x_n\),注意到:
\[x_{n + p} - x_n = \sum_{i = n}^{n + p - 1} |a_{i + 1} - a_i| \ge \left|\sum_{i = n}^{n + p - 1} (a_{i + 1} - a_i)\right| = |a_{n + p} - a_n|
\]
则对于任意 \(\epsilon > 0\),存在 \(N \in \mathbb{N^*}\),使得对 \(n > N\),有 \(|\gamma - x_n| = \gamma - x_n < \epsilon\),又有 \(\gamma \ge x_{n + p}\)。
则:
\[|a_{n + p} - a_n| \le \gamma - x_n < \gamma - (\gamma - \epsilon) = \epsilon
\]
对任意 \(n > N\) 都成立。
\(\mathbf{Problem\ 6}\) 证明:
由 \(a_n \in [a, b]\) 可知 \(\{a_n\}\) 必有一收敛子列,假设该子列收敛于 \(\gamma\),又有 \(\{a_n\}\) 发散,故必存在 \(\epsilon > 0\) 使得对无限多 \(n\) 有 \(|\gamma - a_n| \ge \epsilon\),考虑取出这些满足 \(|\gamma - a_n| \ge \epsilon\) 的 \(a_n\) 组成 \(\{a_n\}\) 的一子列 \(\{a_{k_n}\}\)。
又由 \(a_{k_n} \in [a, b]\),可得存在 \(\{a_{k_n}\}\) 的一收敛子列,设该子列为 \(\{a_{l_n}\}\),则由 \(\{a_{k_n}\}\) 定义可知存在 \(\epsilon > 0\) 使得对任意 \(n\) 有 \(|\gamma - a_{l_n}| \ge \epsilon\),故 \(\{a_{l_n}\}\) 不收敛于 \(\gamma\)。