当前位置: 首页 > news >正文

傅里叶变换及DCT点滴

Screenshot_20251018_181248

上图来自 PDF Fourier Transforms and the Fast Fourier Transform (FFT) Algorithm, Paul Heckbert.

如果a_n都相等的话,A_k是等比数列求和.

为啥傅里叶变换在解密中也有用?因为解密涉及大整数的分解,which涉及一长串数,把它们看作信号的幅值,进行变换后可以得到频谱,即数重复出现的规律.

欧拉恒等式是欧拉公式的特例.i的i次方不是1个数而是一堆数:sin(2npi)都是0

For image processing applications, it is useful to consider the Discrete Cosine Transform (2D DCT) instead of the 2D DFT due to its superior empirical performance for signal compression and reconstruction tasks.

以下摘自Image Compression Using the Discrete Cosine Transform,  Andrew B. Watson, NASA Ames Research Center.

The discrete cosine transform (DCT) is a technique for converting a signal into elementary frequency components. It is widely used in image compression.

Developed by Ahmed, Natarajan, and Rao [1974], the DCT is a close relative of the discrete Fourier transform (DFT). In fact, it is possible to compute the DCT via the DFT (see [Jain 1989, p. 152]): First create a new list by extracting the even elements, followed by the reversed odd elements. Then multiply the DFT of this re-ordered list by so-called "twiddle factors" and take the real part. The inverse DCT can be computed by multiplication with the inverse of the DCT matrix.

The application of the DCT to image compression was pioneered by Chen and Pratt [1984].

The one-dimensional DCT is useful in processing one-dimensional signals such as speech waveforms. For analysis of two-dimensional (2D) signals such as images, we need a 2D version of the DCT. For an n x m matrix s, the 2D DCT is computed in a simple way: The 1D DCT is applied to each row of s and then to each column of the result.

DCT-based image compression relies on two techniques to reduce the data required to represent the image. The first is quantization of the image's DCT coefficients; the second is entropy coding of the quantized coefficients. Quantization is the process of reducing the number of possible values of a quantity, thereby reducing the number of bits needed to represent it. Entropy coding is a technique for representing the quantized data as compactly as possible.

On a SUN Sparcstation 2, the timings increase (at a rate of 0.005 second/pixel) from about 20 seconds for a 64**2 pixel image to about 320 seconds for 256**2 pixels.

鄙人用的是Intel N100 CPU. 单线程8皇后程序和直接puts("92")的体感速度一样.:-) 在7000局象棋里,用电脑搜索有绝杀的,也没跑多长时间。ffmpeg几十张gif转mp4秒出(图片尺寸小)。没等我找到合适的店铺,我已经不需要快电脑了。

These times are much longer than for comparable functions written in a low-level langauge such as C. For example, a C program performed the same computations in under 2 seconds for an image of 2562 pixels, more than 100 times faster than our Mathematica functions. 哦。也许数学软件可以降低一点点神秘度:不必苦思“这不得慢死?” Just do it.

http://www.hskmm.com/?act=detail&tid=33825

相关文章:

  • 【未完待续】MkDocs 部署安装教程
  • 傅里叶变换点滴
  • [PaperReading] SAIL-Embedding Technical Report: Omni-modal Embedding Foundation Model
  • 人生四大支柱 - 健康,金钱,工作,关系
  • 英伟达个人AI超算Spark技术解析
  • [buuctf]jarvisoj_level3_x64
  • SpringBoot系列十三:SpringBoot面试常见问题
  • [LangChain] 04. 提示词模板
  • 2025 最新不锈钢板厂家推荐榜:剖析国内头部品牌竞争优势,附优质供应商选择指南N06625/N06600/C70600不锈钢板厂家推荐
  • 2025 夹丝玻璃源头厂家最新推荐排行榜:解析防火 / 艺术 / 酒店等多场景厂商优势,助力精准选型
  • 2025 中空板源头厂家最新推荐排行榜揭晓:覆盖全产业链,老牌与新锐共筑品质标杆
  • 2025 年感温电缆厂家最新推荐榜单:覆盖线型 / 缆式 / 可恢复 / 消防等多类型产品,全方位解析头部企业核心优势
  • 2025 年盖板源头厂家最新推荐榜单:电力 / 隧道 / 电缆沟等多场景适用品牌优选,解析原材料采购与成本控制要点
  • win
  • 2025 年真空炉制造厂家最新推荐排行榜:涵盖高温烧结真空炉 / 真空退火炉 / 智能铍铜真空炉,助力企业精准选型
  • 2025 年最新推荐排水沟厂家排行榜:聚焦树脂 / 线性 / 树脂混凝土 / 成品 / U 型排水沟优质企业
  • 将 XMind 测试用例转换为 CSV 文件导入测试管理平台
  • 互评-OO之接口-DAO模式代码阅读及应用
  • experiment2
  • 【为美好CTF献上祝福】unity逆向
  • 扩展欧几里得算法
  • 今日学习笔记
  • CSP-S 2022 Solution
  • 印刷电子技术挑战传统PCB主导地位
  • 2025-10-18
  • 某兔网站加密学习
  • 5.vtk学习——点云显示进阶
  • [LangChain] 03. 缓存
  • 面试 / 答辩总卡壳?这款 AI 面试辅助新功能:上传专属资料,精准应答不翻车
  • C语言编程之旅:从入门到实战