首先看一下KL的基础公式
KL
KL1:
大模型的KL一般是反向的:
\(x\sim\pi_\theta(\cdot|o_{<t})\) 代表 当前模型根据前t-1个token采样得到第t个token x
KL3(GRPO使用的无偏,低方差KL1估计) http://joschu.net/blog/kl-approx.html:
- 正向KL:倾向于使模型分布 Q 覆盖目标分布 P 的所有支持点,适合于需要模型分布更广泛覆盖的情况。
- 反向KL:倾向于使模型分布 Q 集中在目标分布 P 的高概率区域,适合于生成任务,能够提高生成样本的质量和稳定性。
因此,在大语言模型和生成任务中,反向KL通常更受青睐。
不同RL算法 loss的计算
对于q的第\(i\)个sample的第\(t\)个token的loss: \(loss_{i,t}=pg\_loss_{i,t}+entropy\_loss_{i, t}+kl\_loss_{i,t}\)
再对一个batch中所有的token loss \(loss_{i,t}\)做聚合agg,得到这个batch的整体loss,可用于后续的反向传播和模型更新。
每个token的loss | \(pg\_loss_{i,t}\) | \(kl\_loss_{i,t}\) | loss agg mode |
---|---|---|---|
PPO | \(\max(IS_{i,t}*-A_{i,t},clip(IS_{i,t})*-A_{i,t})\) | \(r_t=-\mathbb{D1}_{KL}(\pi_{old}||\pi_{ref})+r_t\) | \(\frac{1}{G}\sum_{i=1}^G\frac{1}{|o_i|}\sum_{t=1}^{|o_i|}loss_{i,t}\) seq-mean-token-mean |
Dual-clip PPO | for A<0, \(\min(\max(IS_{i,t}*-A_{i,t},clip(IS_{i,t})*-A), clip\_c*-A)\) |
\(r_t=-\mathbb{D1}_{KL}(\pi_{old}||\pi_{ref})+r_t\) | \(\frac{1}{G}\sum_{i=1}^G\frac{1}{|o_i|}\sum_{t=1}^{|o_i|}loss_{i,t}\) seq-mean-token-mean |
GRPO | \(\max(IS_{i,t}*-A_{i,t},clip(IS_{i,t})*-A_{i,t})\) | \(\beta*\mathbb{D3}_{KL}(\pi_{\theta}||\pi_{ref})\) | \(\frac{1}{G}\sum_{i=1}^G\frac{1}{|o_i|}\sum_{t=1}^{|o_i|}loss_{i,t}\) seq-mean-token-mean |
GSPO | \(IS_{i,t} = sg[\frac{\pi_{\theta}(o_i|q)}{\pi_{old}(o_i|q)}]*\frac{\pi_\theta(o_{i,t}|q,o_{i,<t})}{sg[\pi_{\theta}(o_{i,t}|q,o_{i,<t})]}\) \(\max(IS_{i,t}*-A_{i,t},clip(IS_{i,t})*-A_{i,t})\) |
\(\beta*\mathbb{D3}_{KL}(\pi_{\theta}||\pi_{ref})\) | \(\frac{1}{G}\sum_{i=1}^G\frac{1}{|o_i|}\sum_{t=1}^{|o_i|}loss_{i,t}\) seq-mean-token-mean |
DAPO | \(\max(IS_{i,t}*-A_{i,t},clip(IS_{i,t})*-A_{i,t})\) | \(\beta*\mathbb{D3}_{KL}(\pi_{\theta}||\pi_{ref})\) | \(\frac{1}{\sum_{i=1}^G|o_i|}\sum_{i=1}^G\sum_{t=1}^{|o_i|}loss_{i,t}\) token-mean |
PPO
优化目标:
优势: GAE
递推公式,t步的累积优势=t步的优势+ t+1步的累积优势=t步及之后 每一步的优势=t步及之后所有的奖励-第t步的预计奖励
奖励:
verl/trainer/ppo/ray_trainer.py
verl | 如何在奖励中添加KL惩罚项?
###################################################
# 将KL惩罚loss应用到reward中。原始的reward是[0, 0, 0, ..., RM(q,o_i)]
# return KL(\pi_old||\pi_{ref}) + reward
###################################################
def apply_kl_penalty(data: DataProto, kl_ctrl: core_algos.AdaptiveKLController, kl_penalty="kl"):"""Apply KL penalty to the token-level rewards.This function computes the KL divergence between the reference policy and current policy,then applies a penalty to the token-level rewards based on this divergence.Args:data (DataProto): The data containing batched model outputs and inputs.kl_ctrl (core_algos.AdaptiveKLController): Controller for adaptive KL penalty.kl_penalty (str, optional): Type of KL penalty to apply. Defaults to "kl".Returns:tuple: A tuple containing:- The updated data with token-level rewards adjusted by KL penalty- A dictionary of metrics related to the KL penalty"""response_mask = data.batch["response_mask"]token_level_scores = data.batch["token_level_scores"]batch_size = data.batch.batch_size[0]# compute kl between ref_policy and current policy# When apply_kl_penalty, algorithm.use_kl_in_reward=True, so the reference model has been enabled.kld = core_algos.kl_penalty(data.batch["old_log_probs"], data.batch["ref_log_prob"], kl_penalty=kl_penalty) # (batch_size, response_length)kld = kld * response_maskbeta = kl_ctrl.valuetoken_level_rewards = token_level_scores - beta * kld
KL
PPO的KL散度是old到ref的
PPO的代码实现详见下面的Dual-clip PPO(PPO的改进版)
Dual-clip PPO
https://arxiv.org/pdf/1912.09729:对A<0的token的重要性采样IS做clip

论文发现当A<0时,重要性采样的比值*A可以是负无穷,这会导致训练不稳定(梯度爆炸)的现象,因此在ppo的clip上,对于A<0又进一步添加了新的clip (clip_ratio_c)。
代码:
整体的ppo_loss是由pg_loss + kl_loss + entropy_loss构成,不同的RL方法pg_loss, kl_loss的计算方法是不同的。
- pg_loss:具体于
verl/trainer/ppo/core_algos.py
(我将在dual-clip ppo和gspo部分介绍对应的pg_loss代码)。 - kl_loss:同样位于
verl/trainer/ppo/core_algos.py
(我将会在grpo部分介绍具体的low_var_kl代码)。
verl/verl/workers/roles/utils/losses.py
: ppo_loss的计算
######################################################
# 此函数用于计算整体的actor loss
######################################################
def ppo_loss(config: ActorConfig, model_output, data: TensorDict, dp_group=None):log_prob = model_output["log_probs"]entropy = model_output.get("entropy", None)log_prob = no_padding_2_padding(log_prob, data) # (bsz, response_length)if entropy is not None:entropy = no_padding_2_padding(entropy, data) # (bsz, response_length)metrics = {}response_mask = data["response_mask"].to(bool)# compute policy lossold_log_prob = data["old_log_probs"]advantages = data["advantages"]loss_agg_mode = config.loss_agg_modeloss_mode = config.policy_loss.get("loss_mode", "vanilla")policy_loss_fn = get_policy_loss_fn(loss_mode)# 调用下面的计算pg_loss的代码框pg_loss, pg_clipfrac, ppo_kl, pg_clipfrac_lower = policy_loss_fn(old_log_prob=old_log_prob,log_prob=log_prob,advantages=advantages,response_mask=response_mask,loss_agg_mode=loss_agg_mode,config=config,)metrics.update({"pg_loss": pg_loss.detach().item(),"pg_clipfrac": pg_clipfrac.detach().item(),"ppo_kl": ppo_kl.detach().item(),"pg_clipfrac_lower": pg_clipfrac_lower.detach().item(),})policy_loss = pg_loss# 是否使用entropy loss# add entropy lossif entropy is not None:entropy_loss = agg_loss(loss_mat=entropy, loss_mask=response_mask, loss_agg_mode=loss_agg_mode)entropy_coeff = config.entropy_coeff# token的entropy越大越好,而loss是越小越好,因此是 减去 entropypolicy_loss -= entropy_coeff * entropy_loss# 是否使用KL loss(grpo/gspo使用,ppo/dapo不使用)# add kl lossif config.use_kl_loss:ref_log_prob = data["ref_log_prob"]# compute kl losskld = kl_penalty(logprob=log_prob, ref_logprob=ref_log_prob, kl_penalty=config.kl_loss_type)kl_loss = agg_loss(loss_mat=kld, loss_mask=response_mask, loss_agg_mode=config.loss_agg_mode)policy_loss += kl_loss * config.kl_loss_coefmetrics["kl_loss"] = kl_loss.detach().item()metrics["kl_coef"] = config.kl_loss_coefreturn policy_loss, metrics
verl/trainer/ppo/core_algos.py
不同的RL方法计算pg_loss是不同的,这里的是ppo的pg_loss,后面还会介绍gspo的pg_loss的实现。
######################################################
# 此函数用于计算pg_loss,并不计算KL惩罚项
######################################################
@register_policy_loss("vanilla") # type: ignore[arg-type]
def compute_policy_loss_vanilla(old_log_prob: torch.Tensor,log_prob: torch.Tensor,advantages: torch.Tensor,response_mask: torch.Tensor,loss_agg_mode: str = "token-mean",config: Optional[DictConfig | AlgoConfig] = None,rollout_is_weights: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:"""Compute the clipped policy objective and related metrics for PPO.Adapted fromhttps://github.com/huggingface/trl/blob/main/trl/trainer/ppo_trainer.py#L1122Args:old_log_prob (torch.Tensor):Log-probabilities of actions under the old policy, shape (batch_size, response_length).log_prob (torch.Tensor):Log-probabilities of actions under the current policy, shape (batch_size, response_length).advantages (torch.Tensor):Advantage estimates for each action, shape (batch_size, response_length).response_mask (torch.Tensor):Mask indicating which tokens to include in the loss, shape (batch_size, response_length).loss_agg_mode (str, optional):Aggregation mode for `agg_loss`. Defaults to "token-mean".config: `(verl.trainer.config.ActorConfig)`:config for the actor.rollout_log_probs: `(torch.Tensor)`:log probabilities of actions under the rollout policy, shape (batch_size, response_length)."""assert config is not Noneassert not isinstance(config, AlgoConfig)clip_ratio = config.clip_ratio # Clipping parameter ε for standard PPO. See https://arxiv.org/abs/1707.06347.clip_ratio_low = config.clip_ratio_low if config.clip_ratio_low is not None else clip_ratioclip_ratio_high = config.clip_ratio_high if config.clip_ratio_high is not None else clip_ratioclip_ratio_c = config.get( # Lower bound of the ratio for dual-clip PPO. See https://arxiv.org/pdf/1912.09729."clip_ratio_c", 3.0)cliprange = clip_ratiocliprange_low = clip_ratio_lowcliprange_high = clip_ratio_highassert clip_ratio_c > 1.0, ("The lower bound of the clip_ratio_c for dual-clip PPO should be greater than 1.0,"+ f" but get the value: {clip_ratio_c}.")# 计算每一个token的重要性采样的比值的log# log(\pi_{\theta}(o_{i,t}|q,o_{i,<t}))-log(\pi_{old}(o_{i,t}|q,o_{i<t}))negative_approx_kl = log_prob - old_log_prob# 对IS的log做clip,避免过大或过小# Clamp negative_approx_kl for stabilitynegative_approx_kl = torch.clamp(negative_approx_kl, min=-20.0, max=20.0)# 这里ratio是真正的IS 重要性采样ratio = torch.exp(negative_approx_kl)# 计算出-IS在token-level上的均值ppo_kl = verl_F.masked_mean(-negative_approx_kl, response_mask)####################################################### 下面开始计算pg_loss=#A>0, max(ratio*-A, clip(ratio, 1-\epsilon_low, 1+\epsilon_high)*-A)#A<0, min(max(ratio*-A, clip(ratio, 1-\epsilon_low, 1+\epsilon_high)*-A), clip_ratio_c*-A)######################################################pg_losses1 = -advantages * ratioif cliprange_low is None:cliprange_low = cliprangeif cliprange_high is None:cliprange_high = cliprange# clip后的losspg_losses2 = -advantages * torch.clamp(ratio, 1 - cliprange_low, 1 + cliprange_high) # - clip(ratio, 1-cliprange, 1+cliprange) * A# ppo per token lossclip_pg_losses1 = torch.maximum(pg_losses1, pg_losses2) # max(-ratio * A, -clip(ratio, 1-cliprange, 1+cliprange) * A)# 计算被才剪掉的token在 这个batch的所有未mask的token的比例(axis=None)【常数】pg_clipfrac = verl_F.masked_mean(torch.gt(pg_losses2, pg_losses1).float(), response_mask)# 这里是dual-clip PPO提出,使用clip_ratio_c限制A<0的token的losspg_losses3 = -advantages * clip_ratio_c# min(max(ratio*-A, clip(ratio, 1-\epsilon_low, 1+\epsilon_high)*-A), clip_ratio_c*-A)clip_pg_losses2 = torch.min(pg_losses3, clip_pg_losses1)# 记录在传统ppo下,进一步裁减的A<0的IS大于clip_ratio_c的token在 这个batch的所有未mask的token的比例【常数】pg_clipfrac_lower = verl_F.masked_mean(torch.gt(clip_pg_losses1, pg_losses3) * (advantages < 0).float(), response_mask)# pg_losses是分段函数(记录每个token的loss),A<0时用clip_pg_losses2, A>=0时用clip_pg_losses1pg_losses = torch.where(advantages < 0, clip_pg_losses2, clip_pg_losses1)# pg_losses: (bsz, response_length)# 如何计算一整个batch的所有token的整体loss。这有多种方式,主要看配置的loss_agg_modepg_loss = agg_loss(loss_mat=pg_losses, loss_mask=response_mask, loss_agg_mode=loss_agg_mode)return pg_loss, pg_clipfrac, ppo_kl, pg_clipfrac_lower
咱们继续看几种token loss的agg mode。不同RL方法,loss agg mode也是不同的
verl/trainer/ppo/core_algos.py
def agg_loss(loss_mat: torch.Tensor, loss_mask: torch.Tensor, loss_agg_mode: str):"""Aggregate the loss matrix into a scalar.Args:loss_mat: `(torch.Tensor)`:shape: (bs, response_length)loss_mask: `(torch.Tensor)`:shape: (bs, response_length)loss_agg_mode: (str) choices:method to aggregate the loss matrix into a scalar.Returns:loss: `a scalar torch.Tensor`aggregated loss"""if loss_agg_mode == "token-mean":loss = verl_F.masked_mean(loss_mat, loss_mask)elif loss_agg_mode == "seq-mean-token-sum":seq_losses = torch.sum(loss_mat * loss_mask, dim=-1) # token-sumloss = torch.mean(seq_losses) # seq-meanelif loss_agg_mode == "seq-mean-token-mean":seq_losses = torch.sum(loss_mat * loss_mask, dim=-1) / torch.sum(loss_mask, dim=-1) # token-meanloss = torch.mean(seq_losses) # seq-meanelif loss_agg_mode == "seq-mean-token-sum-norm":seq_losses = torch.sum(loss_mat * loss_mask, dim=-1)loss = torch.sum(seq_losses) / loss_mask.shape[-1] # The divisor# (loss_mask.shape[-1]) should ideally be constant# throughout training to well-replicate the DrGRPO paper.# TODO: Perhaps add user-defined normalizer argument to# agg_loss to ensure divisor stays constant throughout.else:raise ValueError(f"Invalid loss_agg_mode: {loss_agg_mode}")return loss
GRPO
优化目标:
优势:
KL3
KL3的方差比KL1小,且是KL1的无偏估计
证明
verl/trainer/ppo/core_algos.py
下面是verl对kl_loss的实现:
def kl_penalty_forward(logprob: torch.FloatTensor, ref_logprob: torch.FloatTensor, kl_penalty) -> torch.FloatTensor:"""Compute KL divergence given logprob and ref_logprob.Copied from https://github.com/huggingface/trl/blob/main/trl/trainer/ppo_trainer.py#L1104See more description in http://joschu.net/blog/kl-approx.htmlArgs:logprob:ref_logprob:Returns:kl_estimate"""if kl_penalty in ("kl", "k1"):return logprob - ref_logprobif kl_penalty == "abs":return (logprob - ref_logprob).abs()if kl_penalty in ("mse", "k2"):return 0.5 * (logprob - ref_logprob).square()############################################################### 这里的low_var_kl与上述的grpo的KL计算公式相同############################################################### J. Schulman. Approximating kl divergence, 2020.# # URL http://joschu.net/blog/kl-approx.html.if kl_penalty in ("low_var_kl", "k3"):kl = ref_logprob - logprob# For numerical stabilitykl = torch.clamp(kl, min=-20, max=20)ratio = torch.exp(kl)kld = (ratio - kl - 1).contiguous()return torch.clamp(kld, min=-10, max=10)if kl_penalty == "full":# so, here logprob and ref_logprob should contain the logits for every token in vocabularyraise NotImplementedErrorraise NotImplementedError
GSPO
seq-level 优化目标:
token-level 优化目标:
可以发现的是 \(sg[s_{i,t}]=sg[s_{i}],s_{i}=(\frac{\pi_{\theta}(o_i|q)}{\pi_{old}(o_i|q)})^{\frac{1}{|o_i|}}\),但是在方向上不同
通过证明,可以发现,当\(A_{i,t}=A_i\)时,seq-level和token-level在前向传播和反向传播上是一样的
token-level 可以更好地扩展 同sample不同token的A的灵活度(每个token的A可以不相同)
verl/trainer/ppo/core_algos.py
##########################################################
# 计算gspo的pg_loss,重点关注IS的计算
##########################################################
@register_policy_loss("gspo")
def compute_policy_loss_gspo(old_log_prob: torch.Tensor,log_prob: torch.Tensor,advantages: torch.Tensor,response_mask: torch.Tensor,loss_agg_mode: str = "seq-mean-token-mean",config: Optional[DictConfig | ActorConfig] = None,rollout_is_weights: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:"""Compute the clipped policy objective and related metrics for GSPO.See https://arxiv.org/pdf/2507.18071 for more details.Args:old_log_prob (torch.Tensor):Log-probabilities of actions under the old policy, shape (batch_size, response_length).log_prob (torch.Tensor):Log-probabilities of actions under the current policy, shape (batch_size, response_length).advantages (torch.Tensor):Advantage estimates for each action, shape (batch_size, response_length).response_mask (torch.Tensor):Mask indicating which tokens to include in the loss, shape (batch_size, response_length).loss_agg_mode (str, optional):Aggregation mode for `agg_loss`. For GSPO, it is recommended to use "seq-mean-token-mean"."""assert config is not Noneassert isinstance(config, ActorConfig)clip_ratio_low = config.clip_ratio_low if config.clip_ratio_low is not None else config.clip_ratioclip_ratio_high = config.clip_ratio_high if config.clip_ratio_high is not None else config.clip_rationegative_approx_kl = log_prob - old_log_prob# compute sequence-level importance ratio:# si(θ) = (π_θ(yi|x)/π_θold(yi|x))^(1/|yi|) =# exp [(1/|y_i|) * Σ_t log(π_θ(y_i,t|x,y_i,<t)/π_θold(y_i,t|x,y_i,<t))]seq_lengths = torch.sum(response_mask, dim=-1).clamp(min=1)negative_approx_kl_seq = torch.sum(negative_approx_kl * response_mask, dim=-1) / seq_lengths# Combined ratio at token level:# s_i,t(θ) = sg[s_i(θ)] · π_θ(y_i,t|x, y_i,<t) / sg[π_θ(y_i,t|x, y_i,<t)]# In log space: log(s_i,t(θ)) = sg[log(s_i(θ))] + log_prob - sg[log_prob]log_seq_importance_ratio = log_prob - log_prob.detach() + negative_approx_kl_seq.detach().unsqueeze(-1)log_seq_importance_ratio = torch.clamp(log_seq_importance_ratio, max=10.0) # clamp for numerical stability# finaly exp() to remove logseq_importance_ratio = torch.exp(log_seq_importance_ratio)pg_losses1 = -advantages * seq_importance_ratiopg_losses2 = -advantages * torch.clamp(seq_importance_ratio, 1 - clip_ratio_low, 1 + clip_ratio_high)pg_losses = torch.maximum(pg_losses1, pg_losses2)# Apply rollout importance sampling weights if providedif rollout_is_weights is not None:pg_losses = pg_losses * rollout_is_weights# for GSPO, we need to aggregate the loss at the sequence level (seq-mean-token-mean)pg_loss = agg_loss(loss_mat=pg_losses, loss_mask=response_mask, loss_agg_mode="seq-mean-token-mean")# For compatibility, return zero for pg_clipfrac_lower (not used in standard GSPO)pg_clipfrac = verl_F.masked_mean(torch.gt(pg_losses2, pg_losses1).float(), response_mask)pg_clipfrac_lower = torch.tensor(0.0, device=pg_loss.device)ppo_kl = verl_F.masked_mean(-negative_approx_kl, response_mask)return pg_loss, pg_clipfrac, ppo_kl, pg_clipfrac_lower
DAPO
优化目标:
其中
其loss agg mode是token-mean。