完整教程:Python 训练营打卡 Day 43
以猫狗图像辨别的新数据集为例,用CNN网络进行训练并用Grad-CAM做可视化
import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transforms, modelsfrom torch.utils.data import DataLoader, random_splitimport matplotlib.pyplot as pltimport numpy as npfrom PIL import Imagefrom pytorch_grad_cam import GradCAMfrom pytorch_grad_cam.utils.image import show_cam_on_imagefrom sklearn.model_selection import train_test_splitimport os # 设置随机种子,确保结果可复现torch.manual_seed(42)np.random.seed(42)# 设置中文字体支持plt.rcParams["font.family"] = ["SimHei"]plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 # 训练集数据增强train_transform = transforms.Compose([ transforms.Resize((32, 32)), # 调整为32×32 transforms.RandomRotation(10), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) # 验证集仅需基础预处理val_transform = transforms.Compose([ transforms.Resize((32, 32)), # 调整为32×32 transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) # 数据集根目录DATASET_ROOT = r'C:\Users\Lenovo\Desktop\archive\cats_vs_dogs_dataset' # 定义数据变换(训练集含增强,验证集无增强)train_transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.RandomRotation(10), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) val_transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) # 加载完整数据集(训练+验证)full_dataset = datasets.ImageFolder( root=DATASET_ROOT, transform=train_transform # 初始使用训练集变换) # 划分训练集和验证集(8:2比例)total_samples = len(full_dataset)train_samples = int(0.8 * total_samples)val_samples = total_samples - train_samples # 随机划分(使用固定种子确保可复现)torch.manual_seed(42)train_dataset, val_dataset = random_split( full_dataset, [train_samples, val_samples], generator=torch.Generator().manual_seed(42)) # 为验证集单独设置变换(移除数据增强)val_dataset.dataset.transform = val_transform # 创建数据加载器batch_size = 32train_loader = DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True) val_loader = DataLoader( val_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True) # 查看数据集信息class_names = full_dataset.classesprint(f"数据集类别: {class_names}")print(f"训练集样本数: {len(train_dataset)}")print(f"验证集样本数: {len(val_dataset)}") class CNN(nn.Module): def __init__(self, num_classes=2): super(CNN, self).__init__() # 卷积层配置 self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1) # 32→32 self.bn1 = nn.BatchNorm2d(32) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) # 32→16 self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 16→16 self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) # 16→8 self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) # 8→8 self.bn3 = nn.BatchNorm2d(128) self.relu3 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) # 8→4 # 全连接层输入维度:128通道 × 4×4特征图 = 2048 self.fc1 = nn.Linear(128 * 4 * 4, 512) self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(512, num_classes) def forward(self, x): x = self.pool1(self.relu1(self.bn1(self.conv1(x)))) x = self.pool2(self.relu2(self.bn2(self.conv2(x)))) x = self.pool3(self.relu3(self.bn3(self.conv3(x)))) # 展平 x = x.view(-1, 128 * 4 * 4) x = self.dropout(self.relu3(self.fc1(x))) x = self.fc2(x) return x def train(model, train_loader, val_loader, criterion, optimizer, scheduler, device, epochs): best_acc = 0.0 best_model_path = 'best_cnn_model.pth' all_iter_losses = [] iter_indices = [] train_acc_history = [] val_acc_history = [] train_loss_history = [] val_loss_history = [] for epoch in range(epochs): # 训练阶段 model.train() running_loss = 0.0 correct = 0 total = 0 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() # 记录损失 iter_loss = loss.item() all_iter_losses.append(iter_loss) iter_indices.append(epoch * len(train_loader) + batch_idx + 1) # 统计准确率 running_loss += iter_loss _, predicted = output.max(1) total += target.size(0) correct += predicted.eq(target).sum().item() if (batch_idx + 1) % 100 == 0: print(f'Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} ' f'| Loss: {iter_loss:.4f} | Acc: {100.*correct/total:.2f}%') # 计算训练指标 epoch_train_loss = running_loss / len(train_loader) epoch_train_acc = 100. * correct / total train_acc_history.append(epoch_train_acc) train_loss_history.append(epoch_train_loss) # 验证阶段 model.eval() val_loss = 0 correct_val = 0 total_val = 0 with torch.no_grad(): for data, target in val_loader: data, target = data.to(device), target.to(device) output = model(data) val_loss += criterion(output, target).item() _, predicted = output.max(1) total_val += target.size(0) correct_val += predicted.eq(target).sum().item() epoch_val_loss = val_loss / len(val_loader) epoch_val_acc = 100. * correct_val / total_val val_acc_history.append(epoch_val_acc) val_loss_history.append(epoch_val_loss) # 更新学习率 scheduler.step(epoch_val_loss) # 保存最佳模型 if epoch_val_acc > best_acc: best_acc = epoch_val_acc torch.save(model.state_dict(), best_model_path) print(f'保存最佳模型 (Epoch {epoch+1} | Acc: {best_acc:.2f}%)') print(f'Epoch {epoch+1}/{epochs} | Train Loss: {epoch_train_loss:.4f} | ' f'Train Acc: {epoch_train_acc:.2f}% | Val Acc: {epoch_val_acc:.2f}%') # 加载最佳模型 model.load_state_dict(torch.load(best_model_path)) return best_acc, (train_acc_history, val_acc_history, train_loss_history, val_loss_history) def plot_epoch_metrics(train_acc, val_acc, train_loss, val_loss): epochs = range(1, len(train_acc) + 1) plt.figure(figsize=(12, 4)) # 绘制准确率曲线 plt.subplot(1, 2, 1) plt.plot(epochs, train_acc, 'b-', label='训练准确率') plt.plot(epochs, val_acc, 'r-', label='验证准确率') plt.xlabel('Epoch') plt.ylabel('准确率 (%)') plt.title('训练和验证准确率') plt.legend() plt.grid(True) # 绘制损失曲线 plt.subplot(1, 2, 2) plt.plot(epochs, train_loss, 'b-', label='训练损失') plt.plot(epochs, val_loss, 'r-', label='验证损失') plt.xlabel('Epoch') plt.ylabel('损失值') plt.title('训练和验证损失') plt.legend() plt.grid(True) plt.tight_layout() plt.show() def visualize_gradcam(model, val_loader, class_names, device, num_samples=5): # 选择目标层(最后一个卷积层) target_layers = [model.conv3] # 创建GradCAM对象 cam = GradCAM(model=model, target_layers=target_layers, use_cuda=device.type == 'cuda') model.eval() fig, axes = plt.subplots(num_samples, 2, figsize=(10, 4*num_samples)) for i in range(num_samples): # 获取样本 inputs, labels = next(iter(val_loader)) input_tensor = inputs[0].unsqueeze(0).to(device) true_label = labels[0].item() # 预测 with torch.no_grad(): outputs = model(input_tensor) _, pred = torch.max(outputs, 1) pred = pred.item() # 生成Grad-CAM热力图 grayscale_cam = cam(input_tensor=input_tensor, targets=None) grayscale_cam = grayscale_cam[0, :] # 取第一个样本的热力图 # 预处理原始图像用于可视化 img = input_tensor[0].cpu().permute(1, 2, 0).numpy() img = (img * np.array([0.229, 0.224, 0.225]) + np.array([0.485, 0.456, 0.406])) img = np.clip(img, 0, 1) # 叠加热力图 visualization = show_cam_on_image(img, grayscale_cam, use_rgb=True) # 显示原始图像 axes[i, 0].imshow(img) axes[i, 0].set_title(f'原始图像\n真实: {class_names[true_label]}, 预测: {class_names[pred]}') axes[i, 0].axis('off') # 显示Grad-CAM结果 axes[i, 1].imshow(visualization) axes[i, 1].set_title('Grad-CAM热力图') axes[i, 1].axis('off') plt.tight_layout() plt.show() # 设备配置device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')print(f"使用设备: {device}") # 初始化模型(适应32×32输入)model = CNN(num_classes=len(class_names)).to(device) # 定义损失函数、优化器和学习率调度器criterion = nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters(), lr=0.001)scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode='min', patience=3, factor=0.5, verbose=True) # 训练模型print("开始训练CNN模型...")best_acc, metrics = train(model, train_loader, val_loader, criterion, optimizer, scheduler, device, epochs=20)print(f"训练完成!最佳验证准确率: {best_acc:.2f}%") # 绘制训练指标train_acc, val_acc, train_loss, val_loss = metricsplot_epoch_metrics(train_acc, val_acc, train_loss, val_loss) # 可视化Grad-CAM结果visualize_gradcam(model, val_loader, class_names, device, num_samples=5)
使用设备: cuda开始训练CNN模型...Epoch 1/20 | Batch 100/541 | Loss: 0.6872 | Acc: 61.47%Epoch 1/20 | Batch 200/541 | Loss: 0.6624 | Acc: 64.19%Epoch 1/20 | Batch 300/541 | Loss: 0.5880 | Acc: 66.16%Epoch 1/20 | Batch 400/541 | Loss: 0.5256 | Acc: 67.46%Epoch 1/20 | Batch 500/541 | Loss: 0.5808 | Acc: 68.56%保存最佳模型 (Epoch 1 | Acc: 76.11%)Epoch 1/20 | Train Loss: 0.5969 | Train Acc: 68.75% | Val Acc: 76.11%Epoch 2/20 | Batch 100/541 | Loss: 0.5069 | Acc: 73.16%Epoch 2/20 | Batch 200/541 | Loss: 0.4214 | Acc: 74.80%Epoch 2/20 | Batch 300/541 | Loss: 0.5005 | Acc: 75.47%Epoch 2/20 | Batch 400/541 | Loss: 0.4932 | Acc: 75.99%Epoch 2/20 | Batch 500/541 | Loss: 0.2958 | Acc: 76.34%保存最佳模型 (Epoch 2 | Acc: 77.15%)Epoch 2/20 | Train Loss: 0.4893 | Train Acc: 76.54% | Val Acc: 77.15%Epoch 3/20 | Batch 100/541 | Loss: 0.5376 | Acc: 80.34%Epoch 3/20 | Batch 200/541 | Loss: 0.4955 | Acc: 80.27%Epoch 3/20 | Batch 300/541 | Loss: 0.3023 | Acc: 79.84%Epoch 3/20 | Batch 400/541 | Loss: 0.4594 | Acc: 79.97%Epoch 3/20 | Batch 500/541 | Loss: 0.3883 | Acc: 80.11%保存最佳模型 (Epoch 3 | Acc: 81.61%)Epoch 3/20 | Train Loss: 0.4306 | Train Acc: 80.06% | Val Acc: 81.61%Epoch 4/20 | Batch 100/541 | Loss: 0.3557 | Acc: 81.66%Epoch 4/20 | Batch 200/541 | Loss: 0.2884 | Acc: 82.02%...Epoch 20/20 | Batch 400/541 | Loss: 0.0146 | Acc: 99.88%Epoch 20/20 | Batch 500/541 | Loss: 0.0139 | Acc: 99.88%Epoch 20/20 | Train Loss: 0.0056 | Train Acc: 99.88% | Val Acc: 85.62%训练完成!最佳验证准确率: 85.96%