结论:
\(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{n-1} + \frac{1}{n} \le \log_2 n\)
证明:
发现 \(n\) 不断 \(\times 2\),同时 \(\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}\) 不断 \(+1\) |
---|
\(\frac{1}{1} \le \frac{1}{1}\) |
\(\frac{1}{1} + (\frac{1}{2}) \le \frac{1}{1} + \frac{1}{1}\) |
\(\frac{1}{1} + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) \le \frac{1}{1} + \frac{1}{1} + \frac{1}{2}\) |
\(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) \le \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{4}\) |
\(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + (\frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16}) \le \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}\) |
结论(调和平方根和):
\(\sum\limits_{i=1}^{n}{\frac{1}{\sqrt{t}}} \approx 2\sqrt{n}\)
证明:不会。
调和平方根和的应用:
- 要枚举三个数 \(a \le b \le c\) 的时候,如果 \(abc \le R\),那么先枚举 \(a\) 再枚举 \(b\) 的时间复杂度为 \(T = \sum\limits_{t=1}^{\sqrt[3]{R}}{\sqrt{\frac{R}{t}}} \approx R^{\frac{2}{3}}\)。
- \(T = \sqrt{R} \sum\limits_{t=1}^{\sqrt[3]{R}}{\frac{1}{\sqrt{t}}} \approx \sqrt{R} \times 2\sqrt[6]{R} \approx R^{\frac{2}{3}}\)