当前位置: 首页 > news >正文

Docling + LangChain + RAG 构建智能文档问答系统

构建智能文档问答系统:Docling + LangChain + RAG 完整实战指南

前言

在人工智能快速发展的今天,如何让AI更好地理解和处理复杂的文档内容成为了一个重要课题。本文将详细介绍如何结合Docling文档解析、LangChain框架和RAG(检索增强生成)技术,构建一个智能文档问答系统。通过这个项目,你将学会如何处理PDF文档、创建向量数据库,并实现基于文档的智能问答。

技术栈介绍

Docling:强大的文档解析工具

Docling是IBM开源的文档解析工具,专门用于处理PDF、Word等复杂文档格式。它能够:

  • 准确提取文档中的文本内容
  • 保留文档的结构信息(标题、段落等)
  • 处理表格、图片等复杂元素
  • 生成结构化的文档表示

LangChain:LLM应用开发框架

LangChain是构建LLM应用的主流框架,提供了:

  • 文档加载和处理工具
  • 向量数据库集成
  • 链式调用机制
  • 提示模板管理

RAG:检索增强生成

RAG技术通过结合检索和生成,让AI能够:

  • 基于特定文档回答问题
  • 提供准确的引用来源
  • 减少幻觉现象

项目架构

用户提问 → 文档检索 → 上下文组装 → LLM生成 → 答案输出↓           ↓           ↓           ↓         ↓问题输入    向量搜索    提示模板    AI模型    最终回答

环境准备

首先安装必要的依赖包:

pip install langchain langchain-chroma langchain-huggingface 
pip install langchain-docling langchain-openai langchain-community langchain-core
pip install chromadb docling

核心代码实现

1. 文档加载与解析

def load_document() -> List[Document]:"""使用Docling加载PDF文档Returns:List[Document]: 解析后的文档对象列表"""file_path = ["https://arxiv.org/pdf/2408.09869"]  # Docling技术报告loader = DoclingLoader(file_path=file_path)return loader.load()

DoclingLoader能够智能解析PDF文档,提取文本内容的同时保留文档的元数据信息,包括页面信息、文本位置等。

2. 向量数据库构建

def create_vector_store(document: list) -> Chroma:"""创建向量数据库存储文档嵌入Args:document: 文档对象列表Returns:Chroma: 向量数据库实例"""# 文本分割配置text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,    # 每个文本块的最大字符数chunk_overlap=100    # 相邻块之间的重叠字符数)# 文档分块处理documents = text_splitter.split_documents(document)# 过滤复杂元数据,确保兼容性documents = filter_complex_metadata(documents)# 初始化HuggingFace嵌入模型embeddings = HuggingFaceEmbeddings()# 创建向量数据库return Chroma.from_documents(documents, embeddings)

这里使用了几个关键技术点:

  • 文本分割:将长文档分割成合适大小的块,便于后续处理
  • 元数据过滤:使用filter_complex_metadata确保元数据格式兼容ChromaDB
  • 嵌入模型:使用HuggingFace的预训练模型生成文本嵌入

3. 聊天模型配置

def create_chat():"""配置聊天模型(使用硅基流动API)Returns:ChatOpenAI: 配置好的聊天模型实例"""model = ChatOpenAI(base_url="https://api.siliconflow.cn/v1",api_key=SecretStr("your-api-key"),model="moonshotai/Kimi-K2-Instruct",timeout=120)return model

4. RAG链构建

def user_embeddings() -> None:"""构建完整的RAG问答系统"""# 加载文档并创建向量存储document_ = load_document()vector_store_ = create_vector_store(document_)# 创建检索器retriever = vector_store_.as_retriever(search_type="similarity",search_kwargs={"k": 7}  # 返回7个最相关的文档块)# 获取RAG提示模板prompt = hub.pull("rlm/rag-prompt")def format_docs(docs):"""格式化文档内容为字符串"""return "\n\n".join(doc.page_content for doc in docs)# 构建RAG处理链rag_chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}| prompt  # 应用提示模板| create_chat()  # 使用聊天模型| StrOutputParser()  # 解析输出)# 执行问答result = rag_chain.invoke("How to use the Docling ocr function?")print(result)

关键技术解析

文档处理流程

  1. 文档加载:DoclingLoader从URL或本地文件加载PDF
  2. 内容解析:提取文本、结构信息和元数据
  3. 文本分割:将长文档分割成适合处理的文本块
  4. 嵌入生成:使用HuggingFace模型将文本转换为向量表示
  5. 向量存储:将文本块和对应的嵌入存储到ChromaDB

RAG工作流程

  1. 问题接收:用户输入问题
  2. 向量检索:将问题转换为向量,在数据库中搜索相似文本块
  3. 上下文组装:将检索到的文本块组合成上下文
  4. 提示构建:使用RAG提示模板构建完整的提示词
  5. LLM生成:将提示词发送给LLM生成回答
  6. 结果返回:将生成的答案返回给用户

实际应用示例

让我们看看系统如何处理一个实际问题:

用户问题:"How to use the Docling ocr function?"

系统处理过程

  1. 将问题转换为向量表示
  2. 在向量数据库中搜索相关的文档块
  3. 找到包含OCR功能信息的文本段落
  4. 将这些段落作为上下文发送给LLM
  5. LLM基于上下文生成准确的回答

预期输出

Based on the provided documentation, Docling's OCR functionality can be used by...

性能优化建议

1. 文档预处理优化

  • 对于大型文档,考虑预处理并缓存解析结果
  • 使用合适的文本分割策略,平衡块大小和语义完整性
  • 根据文档类型调整chunk_size和chunk_overlap参数

2. 检索优化

  • 调整检索返回的文档数量(k值)
  • 尝试不同的相似度搜索算法
  • 考虑使用混合检索策略(关键词+向量)

3. 模型选择

  • 根据需求选择合适的嵌入模型
  • 考虑使用专门的领域模型
  • 评估不同LLM的性能和成本

常见问题解决

元数据兼容性问题

错误信息:

ValueError: Expected metadata value to be a str, int, float, bool, or None, got {...}

解决方案:

documents = filter_complex_metadata(documents)

内存使用优化

对于大型文档集合:

  • 使用分批处理
  • 考虑使用磁盘存储而非内存
  • 优化嵌入模型选择

检索质量提升

  • 调整文本分割参数
  • 优化嵌入模型
  • 使用重排序技术

扩展应用场景

1. 企业知识库问答

  • 构建企业内部文档问答系统
  • 支持多种文档格式(PDF、Word、Excel等)
  • 集成权限管理和访问控制

2. 学术研究助手

  • 处理学术论文和技术报告
  • 支持引用追踪和文献综述
  • 多语言文档处理

3. 法律文档分析

  • 合同条款问答
  • 法规条文检索
  • 案例比对分析

总结

通过结合Docling、LangChain和RAG技术,我们成功构建了一个功能强大的文档问答系统。这个系统能够:

  1. 智能解析:准确提取PDF等复杂文档的内容和结构
  2. 高效检索:基于语义相似度快速定位相关信息
  3. 准确回答:结合检索到的上下文生成高质量回答
  4. 灵活扩展:支持多种文档格式和应用场景

这个解决方案为构建企业级知识管理系统、学术研究工具等应用提供了坚实的基础。随着文档处理技术和LLM的不断发展,我们可以期待更多创新应用的出现。

参考资料

  • Docling官方文档
  • LangChain文档
  • ChromaDB文档
  • RAG技术综述

http://www.hskmm.com/?act=detail&tid=36666

相关文章:

  • 广义串并联图
  • 2025 种植棚/养殖棚/工程/羊肚菌/保温/园林/加厚/绿化/草苫子推荐榜:济宁泽萌草制品 5 星领跑,适配大棚 / 混凝土 / 园艺多场景需求
  • 2025年口碑好的防锈漆厂家最新推荐排行榜
  • 2025 餐饮/电商/品牌策划优选榜:上海物心 5 星领跑,细分领域这些适配型企业值得 pick
  • 2025 灌装/大桶/桶装/纯净/瓶装/水设备精选推荐榜:路得自动化领衔,这些靠谱品牌值得关注
  • 2025 打捆机捆/包装/绕树干/草绳推荐榜:济宁泽萌草制品 5 星领跑,适配农业 / 园艺 / 建筑 / 物流捆扎需求
  • 遇到一例无法保存编辑后的 Excel 文件的问题
  • 告别难找的本地搜图工具!ImageSearch 2.2 携全新 2.0UI 登场
  • 2025 年焊管源头厂家最新推荐榜单:盘点高性能焊管制造企业,助力下游企业精准选品家具/汽车/高精度内刮/镀铝/不锈钢/高强钢焊管厂家推荐
  • 2025 年钢管厂家最新推荐榜:覆盖精密钢管、汽车钢管、高强钢钢管等品类,为下游采购企业提供权威选品参考
  • ubuntu24.04 server 版本安装xfce 使用web novnc 远程桌面
  • 数据结构做题记录
  • 生成函数入门
  • 2025 年 PPT 生成工具品牌最新推荐榜单:AI 备案技术加持 + 千万用户信赖,优质工具全方位测评ppt一键生成/自动生成ppt/ppt制作ai工具推荐
  • 2025 国内西服定制品牌口碑榜:私人/西服/婚礼/高级/高端/高档/男士/女士/轻奢/企业团体职业/企业高管/商务/手工/休闲西服定制厂家推荐
  • 题解:P14023 [ICPC 2024 Nanjing R] 社交媒体
  • 2025 全合成润滑油厂家企业推荐榜:进口润滑油/国产润滑油/国内润滑油/半合成润滑油厂家,技术与服务双驱发展
  • docker安装iotdb
  • ALV 按钮置灰
  • 微算法科技(NASDAQ MLGO)创建企业级区块链双层共识算法:融合优化DPoS与动态BFT的协同机制设计
  • CKS-CN 考试知识点分享(14) Istio网络策略 - 实践
  • 2025年10月叛逆青少年改造机构全景解析报告,基于专业测评的技术、性能及市场优势深度分析
  • 2025年10月微高压氧舱厂家全景解析报告,基于专业测评的技术、性能及市场优势深度分析
  • Kubernetes应用微服务 - 指南
  • 看板(Kanban)的使用
  • 第一个 AI 应用
  • 软件工程课程第二次团队作业
  • AGC 板刷记录2
  • 2025 年涿州装修公司最新推荐榜,深度解析企业服务能力与市场口碑优势
  • 结对编程项目总结