当前位置: 首页 > news >正文

博弈1

巴什博奕

\(N\) 个石子,两名玩家轮流行动,按以下规则取石子:

规定:每人每次可以取走 \(X(1 \le X \le M)\) 个石子,拿到最后一颗石子的一方获胜。

双方均采用最优策略,询问谁会获胜。

两名玩家轮流报数。

规定:第一个报数的人可以报 \(X(1 \le X \le M)\) ,后报数的人需要比前者所报数大 \(Y(1 \le Y \le M)\) ,率先报到 \(N\) 的人获胜。

双方均采用最优策略,询问谁会获胜。

  • \(N=K\cdot(M+1)\) (其中 \(K \in \mathbb{N}^+\) ),后手必胜(后手可以控制每一回合结束时双方恰好取走 \(M+1\) 个,重复 \(K\) 轮后即胜利);
  • \(N=K\cdot(M+1)+R\) (其中 \(K \in \mathbb{N}^+,0 < R < M + 1\) ),先手必胜(先手先取走 \(R\) 个,之后控制每一回合结束时双方恰好取走 \(M+1\) 个,重复 \(K\) 轮后即胜利)。

扩展巴什博弈

\(N\) 颗石子,两名玩家轮流行动,按以下规则取石子:。

规定:每人每次可以取走 \(X(a \le X \le b)\) 个石子,如果最后剩余物品的数量小于 \(a\) 个,则不能再取,拿到最后一颗石子的一方获胜。

双方均采用最优策略,询问谁会获胜。

  • \(N = K\cdot(a+b)\) 时,后手必胜;
  • \(N = K\cdot(a+b)+R_1\) (其中 \(K \in \mathbb{N}^+,0 < R_1 < a\) ) 时,后手必胜(这些数量不够再取一次,先手无法逆转局面);
  • \(N = K\cdot(a+b)+R_2\) (其中 \(K \in \mathbb{N}^+,a \le R_2 \le b\) ) 时,先手必胜;
  • \(N = K\cdot(a+b)+R_3\) (其中 \(K \in \mathbb{N}^+,b < R_3 < a + b\) ) 时,先手必胜(这些数量不够再取一次,后手无法逆转局面);

Nim 博弈

\(N\) 堆石子,给出每一堆的石子数量,两名玩家轮流行动,按以下规则取石子:

规定:每人每次任选一堆,取走正整数颗石子,拿到最后一颗石子的一方获胜(注:几个特点是不能跨堆不能不拿)。

双方均采用最优策略,询问谁会获胜。

记初始时各堆石子的数量 \((A_1,A_2,\dots,A_n)\) ,定义尼姆和 \(Sum_N = A_1 \oplus A_2 \oplus \dots \oplus A_n\)

\(\pmb{ Sum_N = 0 }\) 时先手必败,反之先手必胜。

Nim 游戏具体取法

先计算出尼姆和,再对每一堆石子计算 \(A_i \oplus Sum_N\) ,记为 \(X_i\)

若得到的值 \(X_i<A_i\)\(X_i\) 即为一个可行解,即剩下 \(\pmb X_i\) 颗石头,取走 \(\pmb {A_i - X_i}\) 颗石头(这里取小于号是因为至少要取走 \(1\) 颗石子)。

Moore’s Nim 游戏(Nim-K 游戏)

\(N\) 堆石子,给出每一堆的石子数量,两名玩家轮流行动,按以下规则取石子:

规定:每人每次任选不超过 \(K\) 堆,对每堆都取走不同的正整数颗石子,拿到最后一颗石子的一方获胜。

双方均采用最优策略,询问谁会获胜。

把每一堆石子的石子数用二进制表示,定义 \(One_i\) 为二进制第 \(i\) 位上 \(1\) 的个数。

以下局面先手必胜:

对于每一位, \(\pmb{One_1,One_2,\dots ,One_N}\) 均不为 \(\pmb{K+1}\) 的倍数。

Anti-Nim 游戏(反 Nim 游戏)

\(N\) 堆石子,给出每一堆的石子数量,两名玩家轮流行动,按以下规则取石子:

规定:每人每次任选一堆,取走正整数颗石子,拿到最后一颗石子的一方出局

双方均采用最优策略,询问谁会获胜。

  • 所有堆的石头数量均不超过 \(1\) ,且 \(\pmb {Sum_N=0}\) (也可看作“且有偶数堆”);
  • 至少有一堆的石头数量大于 \(1\) ,且 \(\pmb{Sum_N \neq 0}\)

阶梯 - Nim 博弈

\(N\) 级台阶,每一级台阶上均有一定数量的石子,给出每一级石子的数量,两名玩家轮流行动,按以下规则操作石子:

规定:每人每次任选一级台阶,拿走正整数颗石子放到下一级台阶中,已经拿到地面上的石子不能再拿,拿到最后一颗石子的一方获胜。

双方均采用最优策略,询问谁会获胜。

对奇数台阶做传统 \(\pmb{\tt{}Nim}\) 博弈,当 \(\pmb{Sum_N=0}\)** 时先手必败,反之先手必胜。**

http://www.hskmm.com/?act=detail&tid=38071

相关文章:

  • postgresql查询数据sql无法使用到索引
  • 博弈2
  • sg
  • 后缀数组 SA
  • Day3综合案例一:个人简介
  • 自动机
  • 标注工具--抹除目标
  • Z函数(扩展 KMP)
  • 字符串哈希
  • 1024程序员节福利!参与互动,5分钟赢好礼!
  • 马拉车
  • 常见结论与例题
  • 单芯片方案分享-CH336F-USB拓展坞+百兆网卡+读卡器+100W快充芯片
  • 常用例题
  • 实验报告3
  • 2025年真空烧结炉厂家权威推荐榜:真空热处理设备、高温烧结炉、工业窑炉技术实力与市场口碑深度解析
  • 取模类
  • 2025年环评公司权威推荐排行榜,环评手续,环评报告,环评验收,专业高效服务助力企业合规发展
  • 2025年棒球帽厂家推荐排行榜,运动棒球帽,时尚棒球帽,定制棒球帽,防晒棒球帽公司精选榜单
  • 于状压的线性 RMQ 算法
  • Flink编程模型 - 详解
  • 服务器关机用halt、poweroff还是shutdown -h now?一文帮你说明
  • KD Tree
  • ST 表
  • 小波矩阵树:高效静态区间第 K 大查询
  • Seata用法
  • 分数运算类
  • 撸一个功能强大的基于语义的图像检索系统
  • 提交一张 PPT,参与 RTE2025 全球语音智能体云展示
  • 解释 EIP-4337