任务一:
1 #pragma once 2 3 #include <string> 4 5 // 类T: 声明 6 class T { 7 // 对象属性、方法 8 public: 9 T(int x = 0, int y = 0); // 普通构造函数 10 T(const T &t); // 复制构造函数 11 T(T &&t); // 移动构造函数 12 ~T(); // 析构函数 13 14 void adjust(int ratio); // 按系数成倍调整数据 15 void display() const; // 以(m1, m2)形式显示T类对象信息 16 17 private: 18 int m1, m2; 19 20 // 类属性、方法 21 public: 22 static int get_cnt(); // 显示当前T类对象总数 23 24 public: 25 static const std::string doc; // 类T的描述信息 26 static const int max_cnt; // 类T对象上限 27 28 private: 29 static int cnt; // 当前T类对象数目 30 31 // 类T友元函数声明 32 friend void func(); 33 }; 34 35 // 普通函数声明 36 void func();
1 #include "T.h" 2 #include <iostream> 3 #include <string> 4 5 // 类T实现 6 7 // static成员数据类外初始化 8 const std::string T::doc{"a simple class sample"}; 9 const int T::max_cnt = 999; 10 int T::cnt = 0; 11 12 // 类方法 13 int T::get_cnt() { 14 return cnt; 15 } 16 17 // 对象方法 18 T::T(int x, int y): m1{x}, m2{y} { 19 ++cnt; 20 std::cout << "T constructor called.\n"; 21 } 22 23 T::T(const T &t): m1{t.m1}, m2{t.m2} { 24 ++cnt; 25 std::cout << "T copy constructor called.\n"; 26 } 27 28 T::T(T &&t): m1{t.m1}, m2{t.m2} { 29 ++cnt; 30 std::cout << "T move constructor called.\n"; 31 } 32 33 T::~T() { 34 --cnt; 35 std::cout << "T destructor called.\n"; 36 } 37 38 void T::adjust(int ratio) { 39 m1 *= ratio; 40 m2 *= ratio; 41 } 42 43 void T::display() const { 44 std::cout << "(" << m1 << ", " << m2 << ")" ; 45 } 46 47 // 普通函数实现 48 void func() { 49 T t5(42); 50 t5.m2 = 2049; 51 std::cout << "t5 = "; t5.display(); std::cout << '\n'; 52 }
1 #include "T.h" 2 #include <iostream> 3 4 void test_T(); 5 6 int main() { 7 std::cout << "test Class T: \n"; 8 test_T(); 9 10 std::cout << "\ntest friend func: \n"; 11 func(); 12 } 13 14 void test_T() { 15 using std::cout; 16 using std::endl; 17 18 cout << "T info: " << T::doc << endl; 19 cout << "T objects'max count: " << T::max_cnt << endl; 20 cout << "T objects'current count: " << T::get_cnt() << endl << endl; 21 22 T t1; 23 cout << "t1 = "; t1.display(); cout << endl; 24 25 T t2(3, 4); 26 cout << "t2 = "; t2.display(); cout << endl; 27 28 T t3(t2); 29 t3.adjust(2); 30 cout << "t3 = "; t3.display(); cout << endl; 31 32 T t4(std::move(t2)); 33 cout << "t4 = "; t4.display(); cout << endl; 34 35 cout << "test: T objects'current count: " << T::get_cnt() << endl; 36 }
运行结果:
问题1:不能
从编译错误信息可知,在 main 函数中调用 funcT() 时,该函数未被声明。
问题2:
普通构造函数:
作用:创建T类的新对象,使用参数x和y初始化对象的成员,变量参数有默认值,可以作为默认构造函数使用
调用时机:创建对象时
复制构造函数:
作用:通过已有对象创建新对象的副本,保证新对象与源对象有相同的数据但独立的内存
调用时机:对象初始化,函数参数按值传递,函数返回对象值时
移动构造函数:
作用:从临时对象或即将销毁的对象"窃取"资源,将源对象的资源所有权转移给新对象
调用时机:使用std::move时
析构函数:
作用:清理对象占用的资源,释放动态分配的内存
调用时机:对象离开作用域时
问题3:不能
编译报错显示 T::get_cnt() 存在多重定义,这是因为该函数的定义被放置在了头文件(或被多个源文件包含的位置)。
任务二:
Complex.cpp
1 #include "Complex.h" 2 #include <cmath> 3 #include <iostream> 4 5 using namespace std; 6 7 // 静态成员初始化 8 const string Complex::doc = "a simplified Complex class"; 9 10 // 构造函数实现 11 Complex::Complex() : real(0.0), imag(0.0) {} 12 13 Complex::Complex(double r) : real(r), imag(0.0) {} 14 15 Complex::Complex(double r, double i) : real(r), imag(i) {} 16 17 Complex::Complex(const Complex& other) : real(other.real), imag(other.imag) {} 18 19 // 成员函数实现 20 double Complex::get_real() const { 21 return real; 22 } 23 24 double Complex::get_imag() const { 25 return imag; 26 } 27 28 void Complex::add(const Complex& other) { 29 real += other.real; 30 imag += other.imag; 31 } 32 33 // 全局函数实现 34 void output(const Complex& c) { 35 cout << c.get_real(); 36 if (c.get_imag() >= 0) { 37 cout << " + " << c.get_imag() << "i"; 38 } else { 39 cout << " - " << -c.get_imag() << "i"; 40 } 41 } 42 43 double abs(const Complex& c) { 44 return sqrt(c.get_real() * c.get_real() + c.get_imag() * c.get_imag()); 45 } 46 47 Complex add(const Complex& c1, const Complex& c2) { 48 return Complex(c1.get_real() + c2.get_real(), c1.get_imag() + c2.get_imag()); 49 } 50 51 bool is_equal(const Complex& c1, const Complex& c2) { 52 return (c1.get_real() == c2.get_real()) && (c1.get_imag() == c2.get_imag()); 53 } 54 55 bool is_not_equal(const Complex& c1, const Complex& c2) { 56 return !is_equal(c1, c2); 57 }
Complex.h
1 #ifndef COMPLEX_H 2 #define COMPLEX_H 3 4 #include <string> 5 6 class Complex { 7 private: 8 double real; 9 double imag; 10 11 public: 12 static const std::string doc; 13 14 // 构造函数 15 Complex(); 16 Complex(double r); 17 Complex(double r, double i); 18 Complex(const Complex& other); 19 20 // 获取实部和虚部 21 double get_real() const; 22 double get_imag() const; 23 24 // 复数加法 25 void add(const Complex& other); 26 }; 27 28 // 全局函数声明 29 void output(const Complex& c); 30 double abs(const Complex& c); 31 Complex add(const Complex& c1, const Complex& c2); 32 bool is_equal(const Complex& c1, const Complex& c2); 33 bool is_not_equal(const Complex& c1, const Complex& c2); 34 35 #endif
task2.cpp
1 #include "Complex.h" 2 #include <iostream> 3 #include <iomanip> 4 #include <complex> 5 6 using namespace std; 7 8 void test_Complex(); 9 void test_std_complex(); 10 11 int main() { 12 cout << "*******测试1: 自定义类Complex*******\n"; 13 test_Complex(); 14 cout << "\n*******测试2: 标准库模板类complex*******\n"; 15 test_std_complex(); 16 return 0; 17 } 18 19 void test_Complex() { 20 using std::cout; 21 using std::endl; 22 using std::boolalpha; 23 24 cout << "类成员测试: " << endl; 25 cout << Complex::doc << endl << endl; 26 27 cout << "Complex对象测试: " << endl; 28 Complex c1; 29 Complex c2(3, -4); 30 Complex c3(c2); 31 Complex c4 = c2; 32 const Complex c5(3.5); 33 34 cout << "c1 = "; output(c1); cout << endl; 35 cout << "c2 = "; output(c2); cout << endl; 36 cout << "c3 = "; output(c3); cout << endl; 37 cout << "c4 = "; output(c4); cout << endl; 38 cout << "c5.real = " << c5.get_real() 39 << ", c5.imag = " << c5.get_imag() << endl << endl; 40 41 cout << "复数运算测试: " << endl; 42 cout << "abs(c2) = " << abs(c2) << endl; 43 44 c1.add(c2); 45 cout << "c1 += c2, c1 = "; output(c1); cout << endl; 46 47 cout << boolalpha; 48 cout << "c1 == c2 : " << is_equal(c1, c2) << endl; 49 cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl; 50 51 c4 = add(c2, c3); 52 cout << "c4 = c2 + c3, c4 = "; output(c4); cout << endl; 53 } 54 55 void test_std_complex() { 56 using std::cout; 57 using std::endl; 58 using std::boolalpha; 59 60 cout << "std::complex<double>对象测试: " << endl; 61 std::complex<double> c1; 62 std::complex<double> c2(3, -4); 63 std::complex<double> c3(c2); 64 std::complex<double> c4 = c2; 65 const std::complex<double> c5(3.5); 66 67 cout << "c1 = " << c1 << endl; 68 cout << "c2 = " << c2 << endl; 69 cout << "c3 = " << c3 << endl; 70 cout << "c4 = " << c4 << endl; 71 cout << "c5.real = " << c5.real() 72 << ", c5.imag = " << c5.imag() << endl << endl; 73 74 cout << "复数运算测试: " << endl; 75 cout << "abs(c2) = " << abs(c2) << endl; 76 77 c1 += c2; 78 cout << "c1 += c2, c1 = " << c1 << endl; 79 80 cout << boolalpha; 81 cout << "c1 == c2 : " << (c1 == c2) << endl; 82 cout << "c1 != c2 : " << (c1 != c2) << endl; 83 84 c4 = c2 + c3; 85 cout << "c4 = c2 + c3, c4 = " << c4 << endl; 86 }
问题1:标准库更简洁;有关联,这些函数本质上都是数学运算,使用运算符重载更符合数学直觉和编程习惯
问题2:2.1 是,理由:output(),abs(),add(),
函数需要直接访问is_equal()
和is_not_equal()
real
和imag
来格式化输出,如果不使用友元,这些函数只能通过公有接口get_real()
和get_imag()
来访问数据,但这样效率太低
2.2 否,根据cppreference.com:std::abs(std::complex)
是一个非成员函数,它通过公有接口real()
和imag()
来访问复数的实部和虚部,标准库设计遵循"除非必要,否则不使用友元"的原则
2.3 必要的时候:1.当函数确实需要直接访问类的私有成员,且无法通过公有接口有效实现时
2.运算符重载:特别是需要访问两个或多个对象私有数据的二元运算符
3.紧密相关的工具函数:如输入输出函数、类型转换函数等
问题3:在Complex.h中添加:
1 class Complex { 2 private: 3 Complex& operator=(const Complex&); 4 ... 5 public: 6 ... 7 };
任务三:
PlayerControl.h
1 #pragma once 2 #include <string> 3 4 enum class ControlType {Play, Pause, Next, Prev, Stop, Unknown}; 5 6 class PlayerControl { 7 public: 8 PlayerControl(); 9 10 ControlType parse(const std::string& control_str); // 实现std::string --> ControlType转换 11 void execute(ControlType cmd) const; // 执行控制操作(以打印输出模拟) 12 13 static int get_cnt(); 14 15 private: 16 static int total_cnt; 17 };
PlayerControl.cpp
1 #include "PlayerControl.h" 2 #include <iostream> 3 #include <algorithm> 4 5 int PlayerControl::total_cnt = 0; 6 7 PlayerControl::PlayerControl() {} 8 9 ControlType PlayerControl::parse(const std::string& control_str) { 10 // 1. 将输入字符串转为小写,实现大小写不敏感 11 std::string lower_str = control_str; 12 std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(), 13 [](unsigned char c) { return std::tolower(c); }); 14 15 // 2. 匹配"play"/"pause"/"next"/"prev"/"stop"并返回对应枚举 16 // 3. 未匹配的字符串返回ControlType::Unknown 17 ControlType result = ControlType::Unknown; 18 19 if (lower_str == "play") { 20 result = ControlType::Play; 21 } else if (lower_str == "pause") { 22 result = ControlType::Pause; 23 } else if (lower_str == "next") { 24 result = ControlType::Next; 25 } else if (lower_str == "prev") { 26 result = ControlType::Prev; 27 } else if (lower_str == "stop") { 28 result = ControlType::Stop; 29 } 30 31 // 4. 每次成功调用parse时递增total_cnt 32 total_cnt++; 33 34 return result; 35 } 36 37 void PlayerControl::execute(ControlType cmd) const { 38 switch (cmd) { 39 case ControlType::Play: std::cout << "[play] Playing music...\n"; break; 40 case ControlType::Pause: std::cout << "[Pause] Music paused\n"; break; 41 case ControlType::Next: std::cout << "[Next] Skipping to next track\n"; break; 42 case ControlType::Prev: std::cout << "[Prev] Back to previous track\n"; break; 43 case ControlType::Stop: std::cout << "[Stop] Music stopped\n"; break; 44 default: std::cout << "[Error] unknown control\n"; break; 45 } 46 } 47 48 int PlayerControl::get_cnt() { 49 return total_cnt; 50 }
task3.cpp
1 #include "PlayerControl.h" 2 #include <iostream> 3 4 void test() { 5 PlayerControl controller; 6 std::string control_str; 7 std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n"; 8 9 while(std::cin >> control_str) { 10 if(control_str == "quit") 11 break; 12 13 ControlType cmd = controller.parse(control_str); 14 controller.execute(cmd); 15 std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n"; 16 } 17 } 18 19 int main() { 20 test(); 21 return 0; 22 }
运行结果:
任务四:
Fraction.cpp:
1 #include "Fraction.h" 2 #include <iostream> 3 #include <stdexcept> 4 5 using namespace std; 6 7 // 静态成员初始化 8 const string Fraction::doc = "Fraction类 v 0.01版.\n目前仅支持分数对象的构造、输出、加/减/乘/除运算."; 9 10 // 求最大公约数 11 int Fraction::gcd(int a, int b) const { 12 a = abs(a); 13 b = abs(b); 14 while (b != 0) { 15 int temp = b; 16 b = a % b; 17 a = temp; 18 } 19 return a; 20 } 21 22 // 约分函数 23 void Fraction::reduce() { 24 if (down == 0) { 25 throw runtime_error("分母不能为0"); 26 } 27 28 // 处理符号:让分母始终为正 29 if (down < 0) { 30 up = -up; 31 down = -down; 32 } 33 34 // 约分 35 int common = gcd(up, down); 36 if (common != 0) { 37 up /= common; 38 down /= common; 39 } 40 41 // 如果分子为0,分母设为1 42 if (up == 0) { 43 down = 1; 44 } 45 } 46 47 // 构造函数 48 Fraction::Fraction(int numerator, int denominator) : up(numerator), down(denominator) { 49 reduce(); 50 } 51 52 Fraction::Fraction(const Fraction& other) : up(other.up), down(other.down) {} 53 54 // 成员函数实现 55 int Fraction::get_up() const { 56 return up; 57 } 58 59 int Fraction::get_down() const { 60 return down; 61 } 62 63 Fraction Fraction::negative() const { 64 return Fraction(-up, down); 65 } 66 67 // 工具函数实现 68 void output(const Fraction& f) { 69 if (f.get_down() == 1) { 70 cout << f.get_up(); 71 } else { 72 cout << f.get_up() << "/" << f.get_down(); 73 } 74 } 75 76 Fraction add(const Fraction& f1, const Fraction& f2) { 77 int new_up = f1.get_up() * f2.get_down() + f2.get_up() * f1.get_down(); 78 int new_down = f1.get_down() * f2.get_down(); 79 return Fraction(new_up, new_down); 80 } 81 82 Fraction sub(const Fraction& f1, const Fraction& f2) { 83 int new_up = f1.get_up() * f2.get_down() - f2.get_up() * f1.get_down(); 84 int new_down = f1.get_down() * f2.get_down(); 85 return Fraction(new_up, new_down); 86 } 87 88 Fraction mul(const Fraction& f1, const Fraction& f2) { 89 int new_up = f1.get_up() * f2.get_up(); 90 int new_down = f1.get_down() * f2.get_down(); 91 return Fraction(new_up, new_down); 92 } 93 94 Fraction div(const Fraction& f1, const Fraction& f2) { 95 if (f2.get_up() == 0) { 96 cout << "分母不能为0"; 97 return Fraction(0, 1); // 返回一个默认值 98 } 99 int new_up = f1.get_up() * f2.get_down(); 100 int new_down = f1.get_down() * f2.get_up(); 101 return Fraction(new_up, new_down); 102 }
Fraction.h:
1 #pragma once 2 #include <string> 3 4 class Fraction { 5 private: 6 int up; // 分子 7 int down; // 分母 8 9 // 内部工具函数:约分 10 void reduce(); 11 // 内部工具函数:求最大公约数 12 int gcd(int a, int b) const; 13 14 public: 15 static const std::string doc; 16 17 // 构造函数 18 Fraction(int numerator = 0, int denominator = 1); 19 Fraction(const Fraction& other); 20 21 // 获取分子分母 22 int get_up() const; 23 int get_down() const; 24 25 // 求负运算 26 Fraction negative() const; 27 }; 28 29 // 工具函数声明 30 void output(const Fraction& f); 31 Fraction add(const Fraction& f1, const Fraction& f2); 32 Fraction sub(const Fraction& f1, const Fraction& f2); 33 Fraction mul(const Fraction& f1, const Fraction& f2); 34 Fraction div(const Fraction& f1, const Fraction& f2);
task4.cpp:
1 #include "Fraction.h" 2 #include <iostream> 3 4 void test1(); 5 void test2(); 6 7 int main() { 8 std::cout << "测试1: Fraction类基础功能测试\n"; 9 test1(); 10 std::cout << "\n测试2: 分母为0测试: \n"; 11 test2(); 12 return 0; 13 } 14 15 void test1() { 16 using std::cout; 17 using std::endl; 18 19 cout << "Fraction类测试: " << endl; 20 cout << Fraction::doc << endl << endl; 21 22 Fraction f1(5); 23 Fraction f2(3, -4), f3(-18, 12); 24 Fraction f4(f3); 25 26 cout << "f1 = "; output(f1); cout << endl; 27 cout << "f2 = "; output(f2); cout << endl; 28 cout << "f3 = "; output(f3); cout << endl; 29 cout << "f4 = "; output(f4); cout << endl; 30 31 const Fraction f5(f4.negative()); 32 cout << "f5 = "; output(f5); cout << endl; 33 34 cout << "f5.get_up() = " << f5.get_up() 35 << ", f5.get_down() = " << f5.get_down() << endl; 36 37 cout << "f1 + f2 = "; output(add(f1, f2)); cout << endl; 38 cout << "f1 - f2 = "; output(sub(f1, f2)); cout << endl; 39 cout << "f1 * f2 = "; output(mul(f1, f2)); cout << endl; 40 cout << "f1 / f2 = "; output(div(f1, f2)); cout << endl; 41 cout << "f4 + f5 = "; output(add(f4, f5)); cout << endl; 42 } 43 44 void test2() { 45 using std::cout; 46 using std::endl; 47 48 Fraction f6(42, 55), f7(0, 3); 49 50 cout << "f6 = "; output(f6); cout << endl; 51 cout << "f7 = "; output(f7); cout << endl; 52 cout << "f6 / f7 = "; output(div(f6, f7)); cout << endl; 53 }
运行结果:
问题:
我选择的是自由函数方案,理由:友元方案可以直接访问类的私有成员,效率较高,但是破坏封装性,且维护困难;静态成员函数适用于函数与类紧密相关,但不需要特定对象实例,而这些数学运算函数本质上是通用的,不属于某个特定类;在小型项目中,命名空间可能带来不必要的复杂性