一、问题建模
1. 数学模型
目标函数:最小化总成本(建设成本+运输成本)
- \(S\):选中的枢纽集合
- \(C_i\):候选点i的建设成本
- \(w_{kj}\):需求点k到枢纽j的货物量
- \(d_{ik}\):候选点i到需求点k的距离
- \(x_{ijk}\):需求点\(k\)是否通过枢纽i运输
约束条件:
- 选中枢纽数量约束:\(∣S∣=p\)
- 每个需求点仅分配一个枢纽:
- 非负流量约束:\(x_{ijk}≥0\)
二、核心代码
1. 数据准备与初始化
function [nodes, demands] = load_data()% 加载候选节点坐标和需求点数据% 示例:20个候选枢纽,100个需求点nodes = rand(20,2)*100; % 候选枢纽坐标demands = [randi([1,50],100,1), rand(100,2)*100]; % [需求量,坐标]
end% 参数设置
p = 5; % 选中枢纽数量
num_iter = 500; % 最大迭代次数
tabu_tenure = 10; % 禁忌长度
2. 距离矩阵计算
function D = calc_distance(nodes, demands)% 计算枢纽-需求点距离矩阵num_hubs = size(nodes,1);num_demands = size(demands,1);D = zeros(num_hubs, num_demands);for i = 1:num_hubsfor j = 1:num_demandsD(i,j) = norm(nodes(i,:) - demands(j,2:3));endend
end
3. 禁忌搜索算法主体
function [best_solution, best_cost] = tabu_search(nodes, demands, p, num_iter, tabu_tenure)% 初始化[num_hubs, ~] = size(nodes);[num_demands, ~] = size(demands);% 初始解:随机选择p个枢纽current_sol = randperm(num_hubs, p);current_cost = calculate_cost(current_sol, nodes, demands);% 初始化禁忌表tabu_list = containers.Map('KeyType','char','ValueType','double');best_solution = current_sol;best_cost = current_cost;for iter = 1:num_iter% 生成邻域解neighbors = generate_neighbors(current_sol, num_hubs);% 评估邻域解for i = 1:size(neighbors,1)neighbor = neighbors(i,:);if ~is_tabu(neighbor, tabu_list)cost = calculate_cost(neighbor, nodes, demands);if cost < best_costbest_solution = neighbor;best_cost = cost;end% 更新禁忌表tabu_key = mat2str(neighbor);tabu_list(tabu_key) = iter + tabu_tenure;endend% 更新当前解current_sol = neighbors(1,:);current_cost = calculate_cost(current_sol, nodes, demands);end
end
4. 辅助函数
function cost = calculate_cost(solution, nodes, demands)% 计算总成本(建设+运输)p = length(solution);total_cost = 0;% 建设成本C = [5,4,5,6,3,6,4,5,4,6,4,5,4,6,5]; % 示例建设成本total_cost = sum(C(solution));% 运输成本D = calc_distance(nodes, demands);for k = 1:size(demands,1)[~, idx] = min(D(solution,k));total_cost = total_cost + D(solution(idx),k) * demands(k,1);end
endfunction neighbors = generate_neighbors(solution, num_hubs)% 生成邻域解(通过交换两个枢纽)neighbors = [];for i = 1:length(solution)for j = 1:length(solution)if i ~= jneighbor = solution;neighbor(i) = solution(j);neighbor(j) = solution(i);neighbors = [neighbors; neighbor];endendendneighbors = unique(neighbors,'rows');
endfunction is_tabu = is_tabu(solution, tabu_list)% 检查解是否在禁忌表中key = mat2str(solution);is_tabu = isKey(tabu_list, key);
end
三、算法优化
1. 邻域结构改进
-
变邻域搜索:结合交换、插入、反转操作
function neighbors = vns(solution, num_hubs)% 变邻域搜索生成neighbors = [];% 交换操作for i = 1:length(solution)-1for j = i+1:length(solution)neighbor = solution;[neighbor(i), neighbor(j)] = deal(neighbor(j), neighbor(i));neighbors = [neighbors; neighbor];endend% 插入操作for i = 1:length(solution)for j = 1:length(solution)if i ~= jneighbor = [solution(1:i-1), solution(j), solution(i:j-1), solution(j+1:end)];neighbors = [neighbors; neighbor];endendend end
2. 多目标优化扩展
function [f1,f2] = multi_objective(solution, nodes, demands)% 多目标函数:成本+碳排放[f1, ~] = calculate_cost(solution, nodes, demands);% 碳排放计算distances = calc_distance(nodes, demands);for k = 1:size(demands,1)[~, idx] = min(distances(solution,k));f2 = f2 + 0.5 * distances(solution(idx),k) * demands(k,1); % 碳强度系数0.5end
end
参考代码 在MATLAB平台,实现利用禁忌搜索算法,解决物流网络的枢纽选址问题 www.youwenfan.com/contentcni/64659.html
四、性能评估与可视化
1. 收敛曲线分析
function plot_convergence(best_costs)figure;plot(best_costs, 'LineWidth', 2);xlabel('迭代次数'); ylabel('最优成本'); title('禁忌搜索收敛曲线');grid on;
end
2. 结果可视化
function visualize_solution(nodes, solution)figure;hold on;% 绘制候选枢纽plot(nodes(:,1), nodes(:,2), 'bo', 'MarkerSize', 10);% 绘制选中枢纽selected = nodes(solution,:);plot(selected(:,1), selected(:,2), 'rx', 'MarkerSize', 12, 'LineWidth', 2);% 绘制需求点demand_points = demands(:,2:3);plot(demand_points(:,1), demand_points(:,2), 'go', 'MarkerSize', 8);legend('候选枢纽', '选中枢纽', '需求点');title('物流网络枢纽选址结果');hold off;
end
该方案通过禁忌搜索算法有效解决了物流网络枢纽选址问题,在保证解质量的同时显著降低计算复杂度。