后缀数组 SA
以 \(\mathcal O(N)\) 的复杂度求解。
struct SuffixArray {int n;vector<int> sa, rk, lc;SuffixArray(const string &s) {n = s.length();sa.resize(n);lc.resize(n - 1);rk.resize(n);iota(sa.begin(), sa.end(), 0);sort(sa.begin(), sa.end(), [&](int a, int b) { return s[a] < s[b]; });rk[sa[0]] = 0;for (int i = 1; i < n; ++i) {rk[sa[i]] = rk[sa[i - 1]] + (s[sa[i]] != s[sa[i - 1]]);}int k = 1;vector<int> tmp, cnt(n);tmp.reserve(n);while (rk[sa[n - 1]] < n - 1) {tmp.clear();for (int i = 0; i < k; ++i) {tmp.push_back(n - k + i);}for (auto i : sa) {if (i >= k) {tmp.push_back(i - k);}}fill(cnt.begin(), cnt.end(), 0);for (int i = 0; i < n; ++i) {++cnt[rk[i]];}for (int i = 1; i < n; ++i) {cnt[i] += cnt[i - 1];}for (int i = n - 1; i >= 0; --i) {sa[--cnt[rk[tmp[i]]]] = tmp[i];}swap(rk, tmp);rk[sa[0]] = 0;for (int i = 1; i < n; ++i) {rk[sa[i]] = rk[sa[i - 1]] + (tmp[sa[i - 1]] < tmp[sa[i]] || sa[i - 1] + k == n ||tmp[sa[i - 1] + k] < tmp[sa[i] + k]);}k *= 2;}for (int i = 0, j = 0; i < n; ++i) {if (rk[i] == 0) {j = 0;continue;}for (j -= j > 0;i + j < n && sa[rk[i] - 1] + j < n && s[i + j] == s[sa[rk[i] - 1] + j];) {++j;}lc[rk[i] - 1] = j;}}
};
