当前位置: 首页 > news >正文

6-6 卷积神经网络LeNet

1.LeNet

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(16*5*5, 120), nn.Sigmoid(),nn.Linear(120, 84), nn.Sigmoid(),nn.Linear(84, 10)
)
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape: \t', X.shape)
Conv2d output shape: 	 torch.Size([1, 6, 28, 28])
Sigmoid output shape: 	 torch.Size([1, 6, 28, 28])
AvgPool2d output shape: 	 torch.Size([1, 6, 14, 14])
Conv2d output shape: 	 torch.Size([1, 16, 10, 10])
Sigmoid output shape: 	 torch.Size([1, 16, 10, 10])
AvgPool2d output shape: 	 torch.Size([1, 16, 5, 5])
Flatten output shape: 	 torch.Size([1, 400])
Linear output shape: 	 torch.Size([1, 120])
Sigmoid output shape: 	 torch.Size([1, 120])
Linear output shape: 	 torch.Size([1, 84])
Sigmoid output shape: 	 torch.Size([1, 84])
Linear output shape: 	 torch.Size([1, 10])

2.模型训练

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
def evaluate_accuracy_gpu(net, data_iter, device=None):'''使用GPU计算模型在数据集上的精度'''if isinstance(net, nn.Module):net.eval() # 设置为评估模式if not device:device = next(iter(net.parameters())).device# 正确预测的数量,总预测的数量metric = d2l.Accumulator(2)with torch.no_grad():for X, y in data_iter:if isinstance(X, list):# BERT微调所需的X = [x.to(device) for x in X]else:X = X.to(device)y = y.to(device)metric.add(d2l.accuracy(net(X), y), y.numel())return metric[0] / metric[1]
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):'''用GPU训练模型'''def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)print('training on', device)net.to(device)optimizer = torch.optim.SGD(net.parameters(), lr=lr)loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])timer, num_batches = d2l.Timer(), len(train_iter)for epoch in range(num_epochs):# 训练损失之和,训练准确率之和,样本数metric = d2l.Accumulator(3)net.train()for i, (X, y) in enumerate(train_iter):timer.start()optimizer.zero_grad()X, y = X.to(device), y.to(device)y_hat = net(X)l = loss(y_hat, y)l.backward()optimizer.step()with torch.no_grad():# metric.add(1*X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])metric.add(l.sum().item(), d2l.accuracy(y_hat, y), X.shape[0])timer.stop()train_1 = metric[0] / metric[2]train_acc = metric[1] / metric[2]if (i+1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch+(i+1) / num_batches,(train_1, train_acc, None))test_acc = evaluate_accuracy_gpu(net, test_iter)animator.add(epoch+1, (None, None, test_acc))print(f'loss {train_1:.3f}, train acc {train_acc:.3f},'f'test acc {test_acc:.3f}')print(f'{metric[2]*num_epochs / timer.sum():.1f} examples/sec'f'on {str(device)}')
lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.002, train acc 0.827,test acc 0.803
9020.8 examples/secon cpu

image


http://www.hskmm.com/?act=detail&tid=12593

相关文章:

  • 5-5读写文件
  • 6-2图像卷积
  • 二叉树的高度和判断平衡二叉树
  • 20250921 之所思 - 人生如梦
  • UE5 Cook数据结构
  • 通过微信对客服系统客户进行消息提醒,比如客户快过期了,访客发来的消息也是通过模板消息通知给客服
  • WPF治具软件模板分享 - Dragonet
  • 时间复杂度
  • 基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
  • 软件工程第二次作业——个人项目
  • 微信扫码二维码,关注绑定公众号提醒,利用微信公众号的模板消息进行消息通知的推送
  • Arch下实现人脸识别登录:howdy的配置与使用
  • Salephpscripts Web_Directory_Free SQL注入漏洞利用分析(CVE-2024-3552)
  • 12306高并发架构设计:基于区间计数器的网关层拒单方案
  • 各位同学,大家好!我想请大家回忆一段我们在刘集中学的故事,和我单独联系。我想把这些故事写出来保存。欢迎与我分享!谢谢!
  • 实用指南:centos sshd:xxx.xxx.xxx.xxx:allow 如何设置
  • vite7-vue3-os网页os管理|vue3+vite7+arco.design网页pc版webos系统
  • 高并发高吞吐量
  • 服务降级
  • 镜像制作
  • 20231427田泽航第二周预习报告
  • 近期 CF 题不怎么做
  • Day24_【深度学习—广播机制】 - 详解
  • IAR Embedded Workbench中的MCU启动过程分析
  • CSP-S 2025
  • 别样的CSP-S初赛大战(又名:我和油一的那些年)
  • 在ubuntu系统的c语言程序
  • springboot2整合dynamic-datasource-spring-boot-starter多数据源
  • 赛前训练2 extra 思维与构造
  • 详细介绍:基于java的奶茶店管理系统的设计与实现37038-计算机毕设原创(免费领源码+部署教程)