当前位置: 首页 > news >正文

Qwen2.5技术报告

image

全文摘要

Qwen2.5系列模型经过预训练和后处理两个阶段的改进,在高质量预训练数据集的基础上,通过多阶段强化学习等技术进行后处理,提高了人类偏好、长文本生成、结构数据分析和指令遵循等方面的能力。该系列模型提供了多种配置,包括基于基础模型和指令微调的模型,参数量从0.5B到72B不等,并且还提供了量化版本的指令微调模型。此外,该系列模型在各种基准测试中表现出色,超越了许多开源和专有模型,并具有良好的成本效益。Qwen2.5模型还被用于训练专门化的模型,如数学、编码器和多模态模型等。

论文地址:https://arxiv.org/pdf/2412.15115

github: https://github.com/QwenLM/Qwen3/tree/v2.5

huggingface: https://huggingface.co/Qwen

modelscope: https://modelscope.cn/organization/qwen

1

image.png

论文方法

方法描述

本文提出了基于Transformer架构的语言模型Qwen2.5系列,包括密集模型和MoE模型。密集模型采用了Grouped Query Attention(GQA)、SwiGLU激活函数、Rotary Positional Embeddings(RoPE)以及QKV bias等技术来提高模型性能。MoE模型则使用了专门的MoE层替换标准的feed-forward网络层,并通过fine-grained expert segmentation和shared experts routing等策略提高了模型能力。

方法改进

在预训练阶段,作者采用了更加高质量的数据集和数据混合策略,包括更好的控制令牌和数学代码数据集,以及更好的合成数据。同时,他们还引入了长上下文预训练,将初始预训练阶段的上下文长度扩展到4,096个标记,最终扩展到32,768个标记。

在post-training阶段,作者进行了两个关键的改进:一是增加了监督式微调数据覆盖范围,包括长期序列生成、数学问题解决、编程、指令遵循、结构理解、逻辑推理、跨语言转移和稳健系统指令等方面;二是采用了两阶段强化学习,分为离线RL和在线RL,以进一步提升模型的性能。

解决的问题

该研究主要解决了自然语言处理中的几个关键问题,如长期序列生成、数学问题解决、编程、指令遵循、结构理解、逻辑推理、跨语言转移和稳健系统指令等。此外,作者还针对模型的效率和可解释性进行了优化,例如通过长上下文预训练和多阶段强化学习等方式来提高模型的能力和效率。这些改进使得Qwen2.5系列模型能够更好地适应各种自然语言处理任务,并具有更高的准确性和鲁棒性。

论文实验

本文主要介绍了大规模预训练语言模型的评价方法和结果。作者通过一系列的实验来比较不同规模的预训练模型在各种任务上的表现,并对其进行了详细的分析和总结。

首先,作者对大规模预训练语言模型进行了基础能力的测试,包括自然语言理解、编程、数学、科学知识、推理等方面。他们使用了多个公开数据集来评估这些模型的表现,并将它们与其他领先的开源重量级指令引导模型进行了比较。结果显示,作者提出的Qwen2.5系列模型在各个基准上都表现出色,特别是在小规模模型方面具有很强的优势。

其次,作者还对大规模预训练语言模型的长上下文处理能力进行了测试。他们使用了三个不同的基准来评估模型在这个方面的表现,并将其与其他现有的开源和专有的长上下文模型进行了比较。结果显示,作者提出的Qwen2.5系列模型在这方面也表现出色,尤其是在超长上下文的情况下。

最后,作者还对大规模预训练语言模型的奖励模型进行了评估。他们使用了多个不同的基准来评估模型在这个方面的表现,并将其与其他现有的奖励模型进行了比较。结果显示,目前还没有一种有效的奖励模型评估方法,因此需要进一步研究这个问题。

总的来说,本文提供了一个全面的大规模预训练语言模型评估框架,并对其中的一些关键问题进行了深入的研究和探讨。这对于改进和优化大规模预训练语言模型具有重要的指导意义。

table_4

table_6

table_7

table_8

table_9

论文总结

文章优点

  • 提出了Qwen2.5模型,是目前最先进的大型语言模型之一。
  • 在预训练阶段采用了大规模文本数据,并在多个任务上进行了微调,取得了优异的表现。
  • 通过各种技术手段(如超参数调整、后处理等)进一步提高了模型性能。
  • 模型具有高度可扩展性和灵活性,能够适应不同的应用场景。

方法创新点

  • 引入了多模式融合技术和监督强化学习方法,使得模型能够在更广泛的领域中表现出色。
  • 利用了大规模文本数据进行预训练,并使用小规模数据进行微调,降低了计算成本和时间开销。
  • 运用了多种技术手段来提高模型性能,包括优化算法、超参数调整、后处理等。

未来展望

  • 将继续研究如何提高模型的泛化能力和稳定性,以应对更加复杂的场景。
  • 将探索如何将模型应用于更多的实际问题中,例如自然语言推理、机器翻译等领域。
  • 将尝试开发新的技术手段,以便更好地利用大规模数据集和硬件资源,从而实现更高的性能提升。
http://www.hskmm.com/?act=detail&tid=29927

相关文章:

  • 手把手教你在 Windows 安装 Docker Desktop
  • AI重构项目管理:2025年工具生态的三大颠覆性趋势
  • 跨数据与任务的可扩展图像分割技术
  • 2025年10月变位机厂家最新推荐排行榜,焊接变位机,机器人变位机,重型变位机,轻型变位机公司推荐!
  • 2025年中国开发者代码管理平台选型全景报告:从本土化适配到全球化协作
  • ZKsync Baby Alpha里程碑达成:zkEVM技术架构全面解析
  • 【技术干货】Vaadin Flow vs Hilla:你该选择哪个Java Web框架?
  • 使用CVX工具箱求解凸优化问题示例
  • 2025年10月家纺摄影公司最新推荐榜单,专业拍摄与创意设计一站式服务首选!
  • 彩笔运维勇闯机器学习--KNN算法
  • FastReport文本框根据高度缩小字体
  • 国产代码托管平台Gitee崛起:企业级Git自建解决方案深度解析
  • 易基因:植物作为表观遗传学研究理想模型 如何把握研究思路与应用探索|项目解析
  • 供应商协同管理系统:打破协作壁垒提升供应链效能
  • 2025年10月锅炉厂家最新权威推荐榜:高效节能与安全稳定品质之选!
  • Gitee如何重塑中国开发者的效率革命?
  • 2025 年最新推荐雕塑源头厂家排行榜:聚焦成本、定制与全国布局,助力客户精准选合作方铸铜/铸铝/仿古/校园/广场/人物雕塑厂家推荐
  • 高效办公必备:自动同步文件的工具如何选
  • 关于通过样式设置的章标题等可能出现不能完全居中的问题的解决办法
  • 2025年10月掘进机厂家最新推荐排行榜,隧道掘进机,煤矿掘进机,城市轨道掘进机公司推荐!
  • Aave 协议的最新版本
  • 2025 年国内空调机组厂家最新推荐,含冷凝热回收等多类型空调机组企业优选指南! 泳池热泵/屋顶式/海水源养殖热泵/精密机房/岗位送风空调机组厂家推荐
  • 2025 年攻丝机定制厂家最新推荐排行榜:聚焦非标异形件加工需求,精选优质品牌助力企业高效生产
  • Uniswap 入门:小白也能懂的去中心化交易所指南
  • Codeforces Round 1058 (Div. 2) A - D
  • ACE-Step音乐生成大模型:开启AI音乐创作新纪元
  • c++操纵器std::ws
  • 2025 年计数包装机厂家最新推荐榜:聚焦高精度高效能品牌,助力企业智能化生产升级全自动/种子/五金/注塑件/纽扣计数包装机厂家推荐
  • JAVA工具包
  • 2025 年蝶阀厂家最新推荐:全金属 / 高压 / 美标 / 双偏心 / 三偏心等各类蝶阀优质厂家榜单及选择指南