当前位置: 首页 > news >正文

期货市场API对接完全指南:实时行情获取与实战应用

期货市场API对接完全指南:实时行情获取与实战应用

本文详细介绍了如何通过API接口获取全球期货市场的实时行情数据,包含完整的代码示例、数据处理方法和实战应用场景。

一、期货API概述

期货市场是金融市场的重要组成部分,提供各种商品、金融指数和利率的标准化合约交易。通过期货API,开发者可以获取实时行情、历史数据、合约信息等关键数据,为量化交易、风险管理和市场分析提供支持。

主要期货API提供商对比

  • Infoway API:提供全球主要期货市场的实时数据,支持RESTful和WebSocket接口
  • Bloomberg:专业级金融数据服务,覆盖全面但成本较高
  • Reuters:老牌金融信息提供商,数据准确性高
  • Quandl:提供历史期货数据,适合回测和研究
  • 各交易所官方API:如CME、ICE等交易所提供的直接数据接口
  • ​​StockTV​​:提供外汇、股票、加密货币等多类金融数据API,无限制接调用次数。提供免费API密钥

二、API接口详解

2.1 期货合约标识

期货合约有特定的命名规则,通常包含:

  • 标的物代码(如CL代表原油)
  • 到期月份代码(F=1月,G=2月,...,Z=12月)
  • 到期年份(如2024年=4)

示例:CLZ4表示2024年12月到期的原油期货合约

2.2 核心API端点

# 基础URL结构
BASE_URL = "https://api.infoway.io/futures"# 主要端点
ENDPOINTS = {"list": "/list",  # 期货列表"quote": "/quote",  # 实时行情"historical": "/historical",  # 历史数据"kline": "/kline"  # K线数据
}

三、Python实现期货数据获取

3.1 基础配置与认证

import requests
import pandas as pd
import numpy as np
import time
from datetime import datetime, timedelta
import jsonclass FuturesAPI:def __init__(self, api_key, base_url="https://api.infoway.io/futures"):self.api_key = api_keyself.base_url = base_urlself.session = self._create_session()def _create_session(self):"""创建带重试机制的会话"""session = requests.Session()retry_strategy = requests.packages.urllib3.util.retry.Retry(total=3,backoff_factor=0.3,status_forcelist=[429, 500, 502, 503, 504],)adapter = requests.adapters.HTTPAdapter(max_retries=retry_strategy)session.mount("http://", adapter)session.mount("https://", adapter)return sessiondef _make_request(self, endpoint, params=None):"""发起API请求"""url = f"{self.base_url}{endpoint}"headers = {"Authorization": f"Bearer {self.api_key}","Content-Type": "application/json"}try:response = self.session.get(url, headers=headers, params=params,timeout=10)response.raise_for_status()return response.json()except requests.exceptions.RequestException as e:print(f"API请求失败: {e}")return None

3.2 获取期货列表

def get_futures_list(self, exchange=None, category=None):"""获取期货合约列表Args:exchange: 交易所代码(可选)category: 品种类别(可选)"""params = {}if exchange:params["exchange"] = exchangeif category:params["category"] = categorydata = self._make_request("/list", params)if data and data.get("code") == 200:return data.get("data", [])return []# 使用示例
api = FuturesAPI("your_api_key")
futures_list = api.get_futures_list(exchange="CME", category="energy")
print(f"找到 {len(futures_list)} 个期货合约")

3.3 获取实时行情

def get_realtime_quotes(self, symbols):"""获取实时行情数据Args:symbols: 合约代码列表"""if not symbols:return []if isinstance(symbols, str):symbols = [symbols]params = {"symbols": ",".join(symbols)}data = self._make_request("/quote", params)if data and data.get("code") == 200:return self._parse_quotes(data.get("data", []))return []def _parse_quotes(self, quotes_data):"""解析行情数据"""parsed_data = []for item in quotes_data:parsed = {"symbol": item.get("symbol"),"name": item.get("name"),"last_price": float(item.get("last_price", 0)),"change": float(item.get("chg", 0)),"change_percent": float(item.get("chg_pct", 0)),"open": float(item.get("open_price", 0)),"high": float(item.get("high_price", 0)),"low": float(item.get("low_price", 0)),"prev_close": float(item.get("prev_price", 0)),"volume": int(item.get("volume", 0)),"timestamp": item.get("time"),"exchange": item.get("exchange")}parsed_data.append(parsed)return parsed_data# 使用示例
quotes = api.get_realtime_quotes(["CLZ4", "GCZ4", "ESZ4"])
for quote in quotes:print(f"{quote['symbol']}: {quote['last_price']} ({quote['change_percent']:.2f}%)")

3.4 获取K线数据

def get_kline_data(self, symbol, interval="1d", limit=100, start_time=None, end_time=None):"""获取K线数据Args:symbol: 合约代码interval: 时间间隔 (1m, 5m, 15m, 30m, 1h, 4h, 1d)limit: 数据条数start_time: 开始时间(时间戳)end_time: 结束时间(时间戳)"""params = {"symbol": symbol,"interval": interval,"limit": limit}if start_time:params["startTime"] = start_timeif end_time:params["endTime"] = end_timedata = self._make_request("/kline", params)if data and data.get("code") == 200:return self._parse_kline(data.get("data", []))return []def _parse_kline(self, kline_data):"""解析K线数据"""df_data = []for item in kline_data:df_data.append({"timestamp": item.get("timestamp"),"datetime": datetime.fromtimestamp(item.get("timestamp", 0)),"open": float(item.get("open", 0)),"high": float(item.get("high", 0)),"low": float(item.get("low", 0)),"close": float(item.get("close", 0)),"volume": float(item.get("volume", 0)),"turnover": float(item.get("turnover", 0))})return pd.DataFrame(df_data)# 使用示例
kline_data = api.get_kline_data("CLZ4", interval="1h", limit=100)
print(kline_data.head())

四、WebSocket实时数据流

对于需要实时数据的应用,WebSocket是更好的选择:

import websockets
import asyncio
import jsonclass FuturesWebSocketClient:def __init__(self, api_key):self.api_key = api_keyself.ws_url = "wss://api.infoway.io/futures/ws"self.connected = Falseself.callbacks = []async def connect(self):"""建立WebSocket连接"""try:self.connection = await websockets.connect(f"{self.ws_url}?apikey={self.api_key}")self.connected = Trueprint("WebSocket连接已建立")# 启动消息处理任务asyncio.create_task(self._message_handler())except Exception as e:print(f"连接失败: {e}")async def subscribe(self, symbols, data_type="quote"):"""订阅期货数据"""if not self.connected:print("未建立连接")return Falsesubscribe_msg = {"action": "subscribe","symbols": symbols if isinstance(symbols, list) else [symbols],"type": data_type}try:await self.connection.send(json.dumps(subscribe_msg))print(f"已订阅: {symbols}")return Trueexcept Exception as e:print(f"订阅失败: {e}")return Falseasync def _message_handler(self):"""处理接收到的消息"""while self.connected:try:message = await self.connection.recv()data = json.loads(message)await self._process_message(data)except websockets.exceptions.ConnectionClosed:print("连接已关闭")breakexcept Exception as e:print(f"处理消息错误: {e}")async def _process_message(self, data):"""处理实时数据"""# 调用所有注册的回调函数for callback in self.callbacks:try:await callback(data)except Exception as e:print(f"回调函数执行错误: {e}")def add_callback(self, callback):"""添加消息回调函数"""self.callbacks.append(callback)async def disconnect(self):"""断开连接"""if self.connected:await self.connection.close()self.connected = False# 使用示例
async def example_usage():client = FuturesWebSocketClient("your_api_key")await client.connect()# 添加数据处理回调async def handle_data(data):print(f"收到数据: {data}")client.add_callback(handle_data)# 订阅数据await client.subscribe(["CLZ4", "GCZ4"])# 保持连接try:await asyncio.Future()  # 永久运行except KeyboardInterrupt:await client.disconnect()# 运行示例
# asyncio.run(example_usage())

五、数据处理与分析

5.1 数据清洗与转换

class FuturesDataProcessor:@staticmethoddef clean_data(df):"""清洗期货数据"""# 去除空值df_clean = df.dropna()# 处理异常值for col in ['open', 'high', 'low', 'close']:q1 = df_clean[col].quantile(0.25)q3 = df_clean[col].quantile(0.75)iqr = q3 - q1lower_bound = q1 - 1.5 * iqrupper_bound = q3 + 1.5 * iqrdf_clean = df_clean[(df_clean[col] >= lower_bound) & (df_clean[col] <= upper_bound)]return df_clean@staticmethoddef calculate_technical_indicators(df):"""计算技术指标"""df = df.copy()# 移动平均线df['ma5'] = df['close'].rolling(window=5).mean()df['ma20'] = df['close'].rolling(window=20).mean()# 相对强弱指数(RSI)delta = df['close'].diff()gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()rs = gain / lossdf['rsi'] = 100 - (100 / (1 + rs))# 布林带df['bb_middle'] = df['close'].rolling(window=20).mean()bb_std = df['close'].rolling(window=20).std()df['bb_upper'] = df['bb_middle'] + 2 * bb_stddf['bb_lower'] = df['bb_middle'] - 2 * bb_stdreturn df

5.2 数据可视化

import matplotlib.pyplot as plt
import seaborn as snsclass FuturesVisualizer:@staticmethoddef plot_price_with_indicators(df, symbol):"""绘制价格和技术指标"""fig, axes = plt.subplots(3, 1, figsize=(12, 10))# 价格和移动平均线axes[0].plot(df['datetime'], df['close'], label='Close Price')axes[0].plot(df['datetime'], df['ma5'], label='5MA', alpha=0.7)axes[0].plot(df['datetime'], df['ma20'], label='20MA', alpha=0.7)axes[0].set_title(f'{symbol} Price and Moving Averages')axes[0].legend()axes[0].grid(True, alpha=0.3)# RSIaxes[1].plot(df['datetime'], df['rsi'], label='RSI', color='orange')axes[1].axhline(70, linestyle='--', alpha=0.3, color='red')axes[1].axhline(30, linestyle='--', alpha=0.3, color='green')axes[1].set_title('RSI Indicator')axes[1].set_ylim(0, 100)axes[1].legend()axes[1].grid(True, alpha=0.3)# 成交量axes[2].bar(df['datetime'], df['volume'], alpha=0.7, color='purple')axes[2].set_title('Volume')axes[2].grid(True, alpha=0.3)plt.tight_layout()plt.savefig(f'{symbol}_analysis.png', dpi=300, bbox_inches='tight')plt.show()@staticmethoddef plot_correlation_matrix(symbols_data):"""绘制相关性矩阵"""closes = pd.DataFrame()for symbol, df in symbols_data.items():closes[symbol] = df['close']correlation = closes.corr()plt.figure(figsize=(10, 8))sns.heatmap(correlation, annot=True, cmap='coolwarm', center=0)plt.title('Futures Correlation Matrix')plt.tight_layout()plt.savefig('futures_correlation.png', dpi=300, bbox_inches='tight')plt.show()# 使用示例
processor = FuturesDataProcessor()
visualizer = FuturesVisualizer()# 数据处理
cleaned_data = processor.clean_data(kline_data)
indicators_data = processor.calculate_technical_indicators(cleaned_data)# 可视化
visualizer.plot_price_with_indicators(indicators_data, "CLZ4")

六、实战应用场景

6.1 期货价格监控系统

class FuturesMonitor:def __init__(self, api_client, alert_rules):self.api_client = api_clientself.alert_rules = alert_rulesself.price_history = {}async def start_monitoring(self, symbols, interval=60):"""启动监控"""print("启动期货价格监控...")while True:try:quotes = self.api_client.get_realtime_quotes(symbols)for quote in quotes:await self._check_alerts(quote)# 记录历史价格for quote in quotes:symbol = quote['symbol']if symbol not in self.price_history:self.price_history[symbol] = []self.price_history[symbol].append({'timestamp': datetime.now(),'price': quote['last_price']})# 保持最近100条记录for symbol in self.price_history:if len(self.price_history[symbol]) > 100:self.price_history[symbol] = self.price_history[symbol][-100:]await asyncio.sleep(interval)except Exception as e:print(f"监控错误: {e}")await asyncio.sleep(5)  # 错误后等待5秒再重试async def _check_alerts(self, quote):"""检查警报条件"""symbol = quote['symbol']if symbol in self.alert_rules:rules = self.alert_rules[symbol]current_price = quote['last_price']# 检查价格突破if 'price_breakout' in rules:breakout_level = rules['price_breakout']if current_price >= breakout_level['upper']:await self._trigger_alert(symbol, f"价格突破上限: {current_price} >= {breakout_level['upper']}","high")elif current_price <= breakout_level['lower']:await self._trigger_alert(symbol, f"价格突破下限: {current_price} <= {breakout_level['lower']}","low")# 检查涨跌幅if 'change_alert' in rules:change_percent = abs(quote['change_percent'])if change_percent >= rules['change_alert']:await self._trigger_alert(symbol,f"大幅波动: {change_percent:.2f}%","volatility")async def _trigger_alert(self, symbol, message, alert_type):"""触发警报"""timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")alert_msg = f"[{timestamp}] {symbol} {message}"print(f"ALERT: {alert_msg}")# 这里可以集成邮件、短信等通知方式# await self._send_email_alert(alert_msg)# await self._send_sms_alert(alert_msg)# 使用示例
alert_rules = {"CLZ4": {"price_breakout": {"upper": 80.00,"lower": 75.00},"change_alert": 2.0  # 2%},"GCZ4": {"price_breakout": {"upper": 2000.00,"lower": 1950.00},"change_alert": 1.5  # 1.5%}
}monitor = FuturesMonitor(api, alert_rules)
# asyncio.run(monitor.start_monitoring(["CLZ4", "GCZ4"]))

6.2 简单的趋势跟踪策略

class TrendFollowingStrategy:def __init__(self, api_client, symbols):self.api_client = api_clientself.symbols = symbolsself.positions = {}async def run_strategy(self):"""运行趋势跟踪策略"""print("启动趋势跟踪策略...")while True:try:for symbol in self.symbols:# 获取历史数据计算指标data = self.api_client.get_kline_data(symbol, "1h", 50)if len(data) < 20:  # 确保有足够的数据continue# 计算技术指标data = FuturesDataProcessor.calculate_technical_indicators(data)# 生成交易信号signal = self._generate_signal(data, symbol)if signal != "hold":await self._execute_trade(symbol, signal, data.iloc[-1]['close'])await asyncio.sleep(3600)  # 每小时检查一次except Exception as e:print(f"策略执行错误: {e}")await asyncio.sleep(300)  # 错误后等待5分钟def _generate_signal(self, data, symbol):"""生成交易信号"""current_close = data.iloc[-1]['close']ma20 = data.iloc[-1]['ma20']ma5 = data.iloc[-1]['ma5']rsi = data.iloc[-1]['rsi']# 简单的趋势跟踪逻辑if ma5 > ma20 and rsi < 70:  # 上升趋势且不过热return "buy"elif ma5 < ma20 and rsi > 30:  # 下降趋势且不超卖return "sell"else:return "hold"async def _execute_trade(self, symbol, signal, price):"""执行交易"""# 这里只是示例,实际交易需要连接交易APIprint(f"{datetime.now()} - {signal.upper()} {symbol} @ {price:.2f}")# 更新持仓if signal == "buy":self.positions[symbol] = {"entry_price": price,"entry_time": datetime.now(),"direction": "long"}elif signal == "sell" and symbol in self.positions:position = self.positions[symbol]pnl = price - position["entry_price"] if position["direction"] == "long" else position["entry_price"] - priceprint(f"平仓盈亏: {pnl:.2f}")del self.positions[symbol]# 使用示例
strategy = TrendFollowingStrategy(api, ["CLZ4", "GCZ4"])
# asyncio.run(strategy.run_strategy())

七、注意事项与最佳实践

7.1 错误处理与重试机制

def robust_api_call(func):"""API调用重试装饰器"""def wrapper(*args, **kwargs):max_retries = 3retry_delay = 1for attempt in range(max_retries):try:return func(*args, **kwargs)except requests.exceptions.ConnectionError as e:if attempt == max_retries - 1:raise eprint(f"连接错误,{retry_delay}秒后重试...")time.sleep(retry_delay)retry_delay *= 2  # 指数退避except requests.exceptions.Timeout as e:if attempt == max_retries - 1:raise eprint(f"请求超时,{retry_delay}秒后重试...")time.sleep(retry_delay)except Exception as e:print(f"API调用错误: {e}")raise ereturn wrapper

7.2 数据缓存策略

from functools import lru_cache
from datetime import datetime, timedeltaclass DataCache:def __init__(self, ttl=300):  # 默认5分钟缓存self.cache = {}self.ttl = ttl@lru_cache(maxsize=128)def get_cached_data(self, key, data_func, *args, **kwargs):"""带缓存的数据获取"""current_time = datetime.now()if key in self.cache:data, timestamp = self.cache[key]if (current_time - timestamp).total_seconds() < self.ttl:return data# 缓存不存在或已过期new_data = data_func(*args, **kwargs)if new_data is not None:self.cache[key] = (new_data, current_time)return new_data# 使用示例
cache = DataCache(ttl=300)  # 5分钟缓存# 带缓存的API调用
cached_data = cache.get_cached_data("CLZ4_1h_100", api.get_kline_data, "CLZ4", "1h", 100
)

八、总结

本文详细介绍了期货市场API的对接方法,涵盖了从基础的数据获取到高级的应用场景。通过合理的错误处理、数据缓存和实时监控,可以构建稳定可靠的期货数据应用系统。

关键要点:

  1. 选择合适的API提供商:根据需求选择功能、成本和稳定性合适的API服务
  2. 实现健壮的错误处理:网络不稳定是常态,必须要有完善的重试机制
  3. 合理使用缓存:对不经常变化的数据实施缓存,减少API调用次数
  4. 实时监控与警报:对于交易应用,实时监控和及时警报至关重要
  5. 数据处理与分析:原始数据需要经过清洗和转换才能用于分析和决策

期货市场数据具有高度的实时性和复杂性,在实际应用中需要根据具体需求不断完善和优化系统架构。

提示:本文示例代码仅供参考,实际使用时请替换为有效的API密钥,并遵守API提供商的使用条款。期货交易有风险,请谨慎决策。

http://www.hskmm.com/?act=detail&tid=21259

相关文章:

  • Tomcat使用redis管理session
  • NOC片上网络总线初探
  • AT_agc037_c [AGC037C] Numbers on a Circle
  • 记账本|基于SSM的家庭记账本小程序设计与实现(源码+数据库+文档) - 实践
  • redis数据连接写法
  • 缩放 div
  • 死锁的概念
  • 【2025-09-29】团队合作
  • 杂凑算法学习笔记
  • pg库支持扩展postgis
  • kuboard部署启用3个etcd(k8s单个master)
  • 数据库服务分布架构(MyCAT)
  • 题解:P14038 [PAIO 2025] Adventure Plan
  • 20231414_王仕琪_密码技术密码杂凑算法学习笔记
  • web3D、webGL、webGPU、webGIS、webXR、webCodecs的概念和对比 - 实践
  • Claude code的 thinking on/off差别有多少
  • Ubuntu 25的网络配置
  • 2025.9.26 测试
  • 贝叶斯学习笔记 - 详解
  • Ubuntu 24和25配置apt国内源
  • 实用指南:AWS实战:轻松创建弹性IP,实现固定公网IP地址
  • 完整教程:自然语言处理项目之情感分析(下)
  • 还在为安装PS发愁?这款网页版工具,打开浏览器就能用!
  • 委托相关
  • 清除“请允许观看视频”通知页面的完整指南
  • 千亿芯片公司被股东“抛弃” ,AI芯片第一股前景几何?
  • Java 与智慧港口:航运调度与物流枢纽数字化
  • DeepSeek-V3.2-Exp 发布,训练推理提效,API 同步降价
  • 图片任意切割工具(Python 3.8 实现)
  • 从零构建能自我优化的AI Agent:Reflection和Reflexion机制对比详解与实现