当前位置: 首页 > news >正文

pytorch作业

696e69b432a5b58a8a3c7f8270e6b47
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt

===================== 1. 数据加载与预处理 =====================

transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False)

classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')

===================== 2. 构建卷积神经网络 =====================

class CIFAR10Net(nn.Module):
def init(self):
super(CIFAR10Net, self).init()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(2, 2)

    self.conv2 = nn.Conv2d(64, 128, 3, padding=1)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(128 * 8 * 8, 512)self.relu3 = nn.ReLU()self.fc2 = nn.Linear(512, 10)def forward(self, x):x = self.pool1(self.relu1(self.conv1(x)))x = self.pool2(self.relu2(self.conv2(x)))x = x.view(-1, 128 * 8 * 8)x = self.relu3(self.fc1(x))x = self.fc2(x)return x

model = CIFAR10Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

===================== 3. 训练网络 =====================

epochs = 10
train_losses = []
train_accs = []

for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0

for inputs, labels in train_loader:optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()_, predicted = outputs.max(1)total += labels.size(0)correct += predicted.eq(labels).sum().item()epoch_loss = running_loss / len(train_loader)
epoch_acc = 100. * correct / total
train_losses.append(epoch_loss)
train_accs.append(epoch_acc)print(f'Epoch {epoch+1}/{epochs} | Loss: {epoch_loss:.3f} | Accuracy: {epoch_acc:.2f}%')

print("训练完成!")

===================== 4. 模型评估(测试集) =====================

model.eval()
correct = 0
total = 0

with torch.no_grad():
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()

test_acc = 100. * correct / total
print(f'测试集准确率: {test_acc:.2f}%')

===================== (可选)可视化训练过程 =====================

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(range(1, epochs+1), train_losses)
plt.title('训练损失')
plt.xlabel('Epoch')
plt.ylabel('Loss')

plt.subplot(1, 2, 2)
plt.plot(range(1, epochs+1), train_accs)
plt.title('训练准确率')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')

plt.tight_layout()
plt.show()

http://www.hskmm.com/?act=detail&tid=31829

相关文章:

  • pytorch实验题作业
  • 每日笔记
  • Zhengrui #3346. DINO
  • Pytorch深度学习训练
  • P11894 「LAOI-9」Update
  • ZR 2025 NOIP 二十连测 Day 3
  • 读书报告
  • P14223 [ICPC 2024 Kunming I] 乐观向上
  • 别再用均值填充了!MICE算法教你正确处理缺失数据
  • 非主流网站程序IndexNow添加方法
  • 卷积神经网络视频读书报告
  • C 语言 - 内存操作函数以及字符串操作函数解析
  • 以*this返回局部对象的两种情况
  • 2025.10.15
  • 软件开发流程
  • Kali 自定义ISO镜像
  • 2025秋_12
  • 10月15日
  • 第七章:C控制语句:分支和跳转
  • 感知节点@5@ ESP32+arduino+ 第三个程序FreeRTOS 上 LED灯显示 和 串口打印ASCII表
  • pytorch实训题
  • 数据库基础知识1
  • 近期模拟赛汇总
  • 实用指南:部署Tomcat11.0.11(Kylinv10sp3、Ubuntu2204、Rocky9.3)
  • Hbase的安装与配置
  • 【Azure App Service】App Service是否支持PHP的版本选择呢?
  • OAuth/OpenID Connect 渗透测试完全指南
  • Problem K. 置换环(The ICPC online 2025)思路解析 - tsunchi
  • Go 语言和 Tesseract OCR 识别英文数字验证码
  • Markdown转换为Word:Pandoc模板使用指南 - 实践