Law 2 of thermodynamics states that \(dΩ_{isolated} \geq 0, dS_{\text{isolated}} \geq 0\)$
\(ΔS_isolated = ΔS_total = ΔS_sys + ΔS_env ≥ 0\)
\(ΔS_{env} = -ΔH_{sys} / T\) constant pressure
ΔS_total = ΔS_sys - ΔH_sys / T ≥ 0
ΔS_sys - ΔH_sys / T ≥ 0
\(ΔH_{sys} / T - ΔS_{sys} \leq 0\)
\(Gibbs\ energy = ΔH_{sys} - TΔS_{sys} \leq 0\)
is sys is human:
\(ΔH_{sys}=ΔH_{human}<0\), oxidation reaction is Exothermic.
glucose: \(C_6H_{12}O_6 + 6O_2 + \color{red}{36~ADP + 36~Pi} -> 6CO_2 + 6H_2O + \color{red}{36~ATP} + \text{多余热能}\)
\(\Delta_cH\) enthalpy of combustion reaction 1: \(\Delta_cH_{glucose} = ΔcH(葡萄糖)=[6ΔfH∘(CO2)+6ΔfH∘(H2O)]−Δ_fH∘(C_6H_12O_6) = -2810kJ/mol, \Delta_cH_{simple\ substance} = \Delta_cH_{O_2} = 0\)
full \(\Delta_fH\) enthalpy of formation reaction 2: \(ΔH_{ADP->ATP}=∑ΔfH∘(产物)−∑ΔfH∘(反应物)=36 \times \left[ \Delta_fH^\circ(ATP) - \Delta_fH^\circ(ADP) - \Delta_fH^\circ(Pi) \right] = +1098kJ/mol\)
-1769 kJ/mol
sucrose: \(C_{12} H_{22} O_{11}(aq) + 12O_2 (g) -> 12CO_2 (g) + 11H_2 O(l)\)
oleic acid: \(C_{18} H_{34} O_2 (aq) + \frac{25}{2}O_2 (g) -> 18CO_2 (g) + 17H_2 O(l)\)
photosynthesis can be ΔH>0. So for human, ΔH_{human} << 0.
b. 熵变 ΔS 计算
为了计算熵变,我们需要标准摩尔熵值(S°)。参考热力学数据(在298 K):
- C₆H₁₂O₆(s): 212 J/mol·K
- O₂(g): 205 J/mol·K
- CO₂(g): 214 J/mol·K
- H₂O(l): 70 J/mol·K
- ADP(aq) 和 ATP(aq) 的熵值较为复杂,但可以从ATP水解的熵变推断。
首先,计算葡萄糖氧化部分的熵变:
- 反应物熵:S°(C₆H₁₂O₆) + 6 × S°(O₂) = 212 + 6 × 205 = 212 + 1230 = 1442 J/mol·K
- 产物熵:6 × S°(CO₂) + 6 × S°(H₂O) = 6 × 214 + 6 × 70 = 1284 + 420 = 1704 J/mol·K
- ΔS_oxidation = 1704 - 1442 = +262 J/mol·K
现在,考虑ATP合成部分。ATP水解反应(ATP → ADP + Pi)的熵变通常为正值:ΔS_hydrolysis ≈ +35 J/mol·K(基于标准数据:ΔG°_hydrolysis = -30.5 kJ/mol, ΔH°_hydrolysis ≈ -20 kJ/mol, 因此 ΔS_hydrolysis = (ΔH° - ΔG°)/T = (-20 - (-30.5))/298 ≈ 0.0352 kJ/mol·K = 35.2 J/mol·K)。
对于ATP合成(逆反应),熵变为负值:ΔS_synthesis = -35.2 J/mol·K per ATP。对于36个ATP:
\(\Delta S_{\text{synthesis}} = -35.2 \times 36 = -1267.2 \text{ J/mol·K} \approx -1.267 \text{ kJ/mol·K}\)
整体反应的熵变:
\(\Delta S_{\text{human}} = \Delta S_{\text{oxidation}} + \Delta S_{\text{synthesis}} = +262 - 1267.2 = -1005.2 \text{ J/mol·K} \approx -1.005 \text{ kJ/mol·K}\)
c. 吉布斯自由能 ΔG 计算
在人体温度约310 K(37°C)下计算:
\(T \Delta S_{\text{human}} = 310 \times (-1.005) = -311.55 \text{ kJ/mol}
\Delta G_{\text{human}} = \Delta H_{\text{human}} - T \Delta S_{\text{human}} = -1712 - (-311.55) = -1400.45 \text{ kJ/mol} < 0\)
因此,即使熵减少(ΔS_human < 0),由于焓减少的幅度很大(ΔH_human << 0),ΔG 仍然为负。这证明了对于人类代谢反应,ΔG < 0。
3. 整体人类的热力学论证
人类是一个开放的、非平衡的系统,处于稳态。从热力学第二定律:
- 系统熵变 ΔS_human 可能为负(由于有序结构的形成),但环境熵变 ΔS_env = -ΔH_human / T > 0(因为 ΔH_sys < 0),且总有 ΔS_total ≥ 0。
- 因此,ΔG_sys = ΔH_sys - TΔS_sys ≤ 0 必然成立。
ΔG_human ≤ 0。人类作为一个生物系统,其过程是自发的,符合热力学原理。尽管熵可能局部减少,但通过放热和环境熵增,总熵增加,维持了生命的持续。
\(dS_{sys}>TδQ_{irrev}\)
\(dS=d_iS+d_eS\)
\(ΔS=∫dS=∫(d_iS+d_eS)\)
\(d_iS≥0\)
So that's fundamental definition of entropy change and only holds exactly for irreversible paths by Clausius Inequality.
The isolated irreversible processes can not maintain the ΔG_human ≤ 0 forever until all of the possibilities.