当前位置: 首页 > news >正文

完整教程:Python 训练营打卡 Day 43

完整教程:Python 训练营打卡 Day 43

以猫狗图像辨别的新数据集为例,用CNN网络进行训练并用Grad-CAM做可视化

import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transforms, modelsfrom torch.utils.data import DataLoader, random_splitimport matplotlib.pyplot as pltimport numpy as npfrom PIL import Imagefrom pytorch_grad_cam import GradCAMfrom pytorch_grad_cam.utils.image import show_cam_on_imagefrom sklearn.model_selection import train_test_splitimport os # 设置随机种子,确保结果可复现torch.manual_seed(42)np.random.seed(42)# 设置中文字体支持plt.rcParams["font.family"] = ["SimHei"]plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题 # 训练集数据增强train_transform = transforms.Compose([    transforms.Resize((32, 32)),  # 调整为32×32    transforms.RandomRotation(10),    transforms.RandomHorizontalFlip(),    transforms.ToTensor(),    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) # 验证集仅需基础预处理val_transform = transforms.Compose([    transforms.Resize((32, 32)),  # 调整为32×32    transforms.ToTensor(),    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) # 数据集根目录DATASET_ROOT = r'C:\Users\Lenovo\Desktop\archive\cats_vs_dogs_dataset' # 定义数据变换(训练集含增强,验证集无增强)train_transform = transforms.Compose([    transforms.Resize((32, 32)),    transforms.RandomRotation(10),    transforms.RandomHorizontalFlip(),    transforms.ToTensor(),    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) val_transform = transforms.Compose([    transforms.Resize((32, 32)),    transforms.ToTensor(),    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) # 加载完整数据集(训练+验证)full_dataset = datasets.ImageFolder(    root=DATASET_ROOT,    transform=train_transform  # 初始使用训练集变换) # 划分训练集和验证集(8:2比例)total_samples = len(full_dataset)train_samples = int(0.8 * total_samples)val_samples = total_samples - train_samples # 随机划分(使用固定种子确保可复现)torch.manual_seed(42)train_dataset, val_dataset = random_split(    full_dataset,     [train_samples, val_samples],     generator=torch.Generator().manual_seed(42)) # 为验证集单独设置变换(移除数据增强)val_dataset.dataset.transform = val_transform # 创建数据加载器batch_size = 32train_loader = DataLoader(    train_dataset,     batch_size=batch_size,     shuffle=True,     num_workers=4,     pin_memory=True) val_loader = DataLoader(    val_dataset,     batch_size=batch_size,     shuffle=False,     num_workers=4,     pin_memory=True) # 查看数据集信息class_names = full_dataset.classesprint(f"数据集类别: {class_names}")print(f"训练集样本数: {len(train_dataset)}")print(f"验证集样本数: {len(val_dataset)}") class CNN(nn.Module):    def __init__(self, num_classes=2):        super(CNN, self).__init__()                # 卷积层配置        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)  # 32→32        self.bn1 = nn.BatchNorm2d(32)        self.relu1 = nn.ReLU()        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # 32→16                self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)  # 16→16        self.bn2 = nn.BatchNorm2d(64)        self.relu2 = nn.ReLU()        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)  # 16→8                self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)  # 8→8        self.bn3 = nn.BatchNorm2d(128)        self.relu3 = nn.ReLU()        self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)  # 8→4                # 全连接层输入维度:128通道 × 4×4特征图 = 2048        self.fc1 = nn.Linear(128 * 4 * 4, 512)        self.dropout = nn.Dropout(0.5)        self.fc2 = nn.Linear(512, num_classes)        def forward(self, x):        x = self.pool1(self.relu1(self.bn1(self.conv1(x))))        x = self.pool2(self.relu2(self.bn2(self.conv2(x))))        x = self.pool3(self.relu3(self.bn3(self.conv3(x))))                # 展平        x = x.view(-1, 128 * 4 * 4)        x = self.dropout(self.relu3(self.fc1(x)))        x = self.fc2(x)        return x def train(model, train_loader, val_loader, criterion, optimizer, scheduler, device, epochs):    best_acc = 0.0    best_model_path = 'best_cnn_model.pth'        all_iter_losses = []    iter_indices = []    train_acc_history = []    val_acc_history = []    train_loss_history = []    val_loss_history = []        for epoch in range(epochs):        # 训练阶段        model.train()        running_loss = 0.0        correct = 0        total = 0                for batch_idx, (data, target) in enumerate(train_loader):            data, target = data.to(device), target.to(device)            optimizer.zero_grad()                        output = model(data)            loss = criterion(output, target)            loss.backward()            optimizer.step()                        # 记录损失            iter_loss = loss.item()            all_iter_losses.append(iter_loss)            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)                        # 统计准确率            running_loss += iter_loss            _, predicted = output.max(1)            total += target.size(0)            correct += predicted.eq(target).sum().item()                        if (batch_idx + 1) % 100 == 0:                print(f'Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} '                      f'| Loss: {iter_loss:.4f} | Acc: {100.*correct/total:.2f}%')                # 计算训练指标        epoch_train_loss = running_loss / len(train_loader)        epoch_train_acc = 100. * correct / total        train_acc_history.append(epoch_train_acc)        train_loss_history.append(epoch_train_loss)                # 验证阶段        model.eval()        val_loss = 0        correct_val = 0        total_val = 0                with torch.no_grad():            for data, target in val_loader:                data, target = data.to(device), target.to(device)                output = model(data)                val_loss += criterion(output, target).item()                _, predicted = output.max(1)                total_val += target.size(0)                correct_val += predicted.eq(target).sum().item()                epoch_val_loss = val_loss / len(val_loader)        epoch_val_acc = 100. * correct_val / total_val        val_acc_history.append(epoch_val_acc)        val_loss_history.append(epoch_val_loss)                # 更新学习率        scheduler.step(epoch_val_loss)                # 保存最佳模型        if epoch_val_acc > best_acc:            best_acc = epoch_val_acc            torch.save(model.state_dict(), best_model_path)            print(f'保存最佳模型 (Epoch {epoch+1} | Acc: {best_acc:.2f}%)')                print(f'Epoch {epoch+1}/{epochs} | Train Loss: {epoch_train_loss:.4f} | '              f'Train Acc: {epoch_train_acc:.2f}% | Val Acc: {epoch_val_acc:.2f}%')        # 加载最佳模型    model.load_state_dict(torch.load(best_model_path))    return best_acc, (train_acc_history, val_acc_history, train_loss_history, val_loss_history) def plot_epoch_metrics(train_acc, val_acc, train_loss, val_loss):    epochs = range(1, len(train_acc) + 1)        plt.figure(figsize=(12, 4))        # 绘制准确率曲线    plt.subplot(1, 2, 1)    plt.plot(epochs, train_acc, 'b-', label='训练准确率')    plt.plot(epochs, val_acc, 'r-', label='验证准确率')    plt.xlabel('Epoch')    plt.ylabel('准确率 (%)')    plt.title('训练和验证准确率')    plt.legend()    plt.grid(True)        # 绘制损失曲线    plt.subplot(1, 2, 2)    plt.plot(epochs, train_loss, 'b-', label='训练损失')    plt.plot(epochs, val_loss, 'r-', label='验证损失')    plt.xlabel('Epoch')    plt.ylabel('损失值')    plt.title('训练和验证损失')    plt.legend()    plt.grid(True)        plt.tight_layout()    plt.show() def visualize_gradcam(model, val_loader, class_names, device, num_samples=5):    # 选择目标层(最后一个卷积层)    target_layers = [model.conv3]        # 创建GradCAM对象    cam = GradCAM(model=model, target_layers=target_layers, use_cuda=device.type == 'cuda')        model.eval()    fig, axes = plt.subplots(num_samples, 2, figsize=(10, 4*num_samples))        for i in range(num_samples):        # 获取样本        inputs, labels = next(iter(val_loader))        input_tensor = inputs[0].unsqueeze(0).to(device)        true_label = labels[0].item()                # 预测        with torch.no_grad():            outputs = model(input_tensor)            _, pred = torch.max(outputs, 1)            pred = pred.item()                # 生成Grad-CAM热力图        grayscale_cam = cam(input_tensor=input_tensor, targets=None)        grayscale_cam = grayscale_cam[0, :]  # 取第一个样本的热力图                # 预处理原始图像用于可视化        img = input_tensor[0].cpu().permute(1, 2, 0).numpy()        img = (img * np.array([0.229, 0.224, 0.225]) + np.array([0.485, 0.456, 0.406]))        img = np.clip(img, 0, 1)                # 叠加热力图        visualization = show_cam_on_image(img, grayscale_cam, use_rgb=True)                # 显示原始图像        axes[i, 0].imshow(img)        axes[i, 0].set_title(f'原始图像\n真实: {class_names[true_label]}, 预测: {class_names[pred]}')        axes[i, 0].axis('off')                # 显示Grad-CAM结果        axes[i, 1].imshow(visualization)        axes[i, 1].set_title('Grad-CAM热力图')        axes[i, 1].axis('off')        plt.tight_layout()    plt.show() # 设备配置device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')print(f"使用设备: {device}") # 初始化模型(适应32×32输入)model = CNN(num_classes=len(class_names)).to(device) # 定义损失函数、优化器和学习率调度器criterion = nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters(), lr=0.001)scheduler = optim.lr_scheduler.ReduceLROnPlateau(    optimizer, mode='min', patience=3, factor=0.5, verbose=True) # 训练模型print("开始训练CNN模型...")best_acc, metrics = train(model, train_loader, val_loader, criterion, optimizer, scheduler, device, epochs=20)print(f"训练完成!最佳验证准确率: {best_acc:.2f}%") # 绘制训练指标train_acc, val_acc, train_loss, val_loss = metricsplot_epoch_metrics(train_acc, val_acc, train_loss, val_loss) # 可视化Grad-CAM结果visualize_gradcam(model, val_loader, class_names, device, num_samples=5)
使用设备: cuda开始训练CNN模型...Epoch 1/20 | Batch 100/541 | Loss: 0.6872 | Acc: 61.47%Epoch 1/20 | Batch 200/541 | Loss: 0.6624 | Acc: 64.19%Epoch 1/20 | Batch 300/541 | Loss: 0.5880 | Acc: 66.16%Epoch 1/20 | Batch 400/541 | Loss: 0.5256 | Acc: 67.46%Epoch 1/20 | Batch 500/541 | Loss: 0.5808 | Acc: 68.56%保存最佳模型 (Epoch 1 | Acc: 76.11%)Epoch 1/20 | Train Loss: 0.5969 | Train Acc: 68.75% | Val Acc: 76.11%Epoch 2/20 | Batch 100/541 | Loss: 0.5069 | Acc: 73.16%Epoch 2/20 | Batch 200/541 | Loss: 0.4214 | Acc: 74.80%Epoch 2/20 | Batch 300/541 | Loss: 0.5005 | Acc: 75.47%Epoch 2/20 | Batch 400/541 | Loss: 0.4932 | Acc: 75.99%Epoch 2/20 | Batch 500/541 | Loss: 0.2958 | Acc: 76.34%保存最佳模型 (Epoch 2 | Acc: 77.15%)Epoch 2/20 | Train Loss: 0.4893 | Train Acc: 76.54% | Val Acc: 77.15%Epoch 3/20 | Batch 100/541 | Loss: 0.5376 | Acc: 80.34%Epoch 3/20 | Batch 200/541 | Loss: 0.4955 | Acc: 80.27%Epoch 3/20 | Batch 300/541 | Loss: 0.3023 | Acc: 79.84%Epoch 3/20 | Batch 400/541 | Loss: 0.4594 | Acc: 79.97%Epoch 3/20 | Batch 500/541 | Loss: 0.3883 | Acc: 80.11%保存最佳模型 (Epoch 3 | Acc: 81.61%)Epoch 3/20 | Train Loss: 0.4306 | Train Acc: 80.06% | Val Acc: 81.61%Epoch 4/20 | Batch 100/541 | Loss: 0.3557 | Acc: 81.66%Epoch 4/20 | Batch 200/541 | Loss: 0.2884 | Acc: 82.02%...Epoch 20/20 | Batch 400/541 | Loss: 0.0146 | Acc: 99.88%Epoch 20/20 | Batch 500/541 | Loss: 0.0139 | Acc: 99.88%Epoch 20/20 | Train Loss: 0.0056 | Train Acc: 99.88% | Val Acc: 85.62%训练完成!最佳验证准确率: 85.96%
http://www.hskmm.com/?act=detail&tid=26908

相关文章:

  • 快读快写
  • [KaibaMath]1002 关于[x+n]=[x]+n的证明
  • SpringBoot进阶教程(八十七)数据压缩
  • 塑料回收技术创新与可持续发展
  • 共享掩码:TFHE在打包消息上的自举技术
  • 详细介绍:[论文阅读] (38)基于大模型的威胁情报分析与知识图谱构建论文总结(读书笔记)
  • MATLAB安装 - -一叶知秋
  • 2025球墨铸铁管厂家 TOP 企业品牌推荐排行榜,市政球墨铸铁管、球墨铸铁管件、防腐球墨铸铁管、给水球墨铸铁管推荐这十家公司!
  • Say 题选记(10.5 - 10.11)
  • E. Rasta Thamaye Dilo
  • 微信机器人开发最新协议API
  • JDK的安装与使用 - XYX
  • Rust 的英文数字验证码识别系统实现
  • 微信机器人制作教程+源码
  • 基于 Rust 的英文数字验证码识别系统实现
  • 使用 Fortran 实现英文数字验证码识别系统
  • 初来乍到,发篇博客试试功能
  • 国庆集训游记
  • P11967 [GESP202503 八级] 割裂
  • 用 Ada 实现英文数字验证码识别
  • P11380 [GESP202412 八级] 排队
  • 数据增强操作
  • HTML5实现简洁的端午节节日网站源码 - 实践
  • Visio的图片,粘到word中显示不全,右边和下面显示不出来
  • 25国庆总结
  • 某平台增强排序脚本
  • 印度乡村AI计划:用JAN AI打造人工智能优先村庄
  • # Java方法学习:动手动脑与课后实验整理
  • CF2155D Batteries
  • JAVA语法基础》动手动脑与实验问题全整理