椭圆 \(E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)(\(a>b>0\))的离心率为 \(\dfrac{\sqrt{5}}{3}\),\(A\)、\(C\) 分别为 \(E\) 的上、下顶点,\(B\)、\(D\) 分别为 \(E\) 的左、右顶点,\(|AC|=4\)。点 \(P\) 为第一象限内 \(E\) 上的一个动点,直线 \(PD\) 与直线 \(BC\) 交于点 \(M\),直线 \(PA\) 与直线 \(y=-2\) 交于点 \(N\)。求证:\(MN \parallel CD\)。
\(E:\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)。
设 \(PM:x=ty+3\)。
\[\begin{cases}x=ty+3\\4x^2+9y^2-36=0\end{cases}
\]
\[(4t^2+9)y^2+24ty=0
\]
\[y=\dfrac{-24t}{4t^2+9},x=\dfrac{-12t^2+27}{4t^2+9}
\]
\[\therefore P\left(\dfrac{-12t^2+27}{4t^2+9},\dfrac{-24t}{4t^2+9}\right)
\]
\[\begin{cases}x=ty+3\\x=-\dfrac32y-3\end{cases}
\]
\[y=\dfrac{-12}{2t+3},x=\dfrac{-6t+9}{2t+3}
\]
\[\therefore M\left(\dfrac{-6t+9}{2t+3},\dfrac{-12}{2t+3}\right)
\]
\[\dfrac{1}{k_{AP}}=\dfrac{-12t^2+27}{-8t^2-24t-18}=\dfrac{-3(2t+3)(2t-3)}{-2{(2t+3)}^2}=\dfrac{3(2t-3)}{2(2t+3)}
\]
\[\therefore AP:x=\dfrac{3(2t-3)}{2(2t+3)}(y-2)
\]
代入 \(y=-2\),得 \(x=\dfrac{-6(2t-3)}{2t+3}\)。
\[\therefore N\left(\dfrac{-6(2t-3)}{2t+3},-2\right)
\]
\[\dfrac{1}{k_{MN}}=\dfrac{-6t+9+6(2t-3)}{-12+2(2t+3)}=\dfrac{6t-9}{4t-6}=\dfrac{3}{2}=\dfrac{1}{k_{CD}}
\]
\[\therefore MN \parallel CD
\]
